
Tuning of the MuPix8
High-Voltage Active Pixel Sensor

Diego Mauricio Salgado Llamas

Bachelor thesis in Physics
Presented to the Fachbereich 08 – Physik, Mathematik und Informatik

at the Johannes Gutenberg-Universität Mainz

November 29, 2018

First evaluator: Prof. Dr. Niklaus Berger
Second evaluator: Prof. Dr. Lucia Masetti

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Mainz, den 29. November, 2018

Diego Mauricio Salgado Llamas
AG Berger
Institut für Kernphysik
Staudingerweg 9
Johannes Gutenberg-Universität
55128 Mainz

Abstract

The MuPix is a high voltage monolithic active pixel sensor (HV-MAPS) designed for the
Mu3e experiment. This experiment conducted at the Paul Scherer Institute is searching for
lepton flavour violating decay of the µ+ −→ e+e−e+, which is not allowed in the standard
model. The goal of this thesis was to minimize the position dependent signal delay, that
in turn affects the time resolution of the detector. As a part of the thesis, an algorithm
was developed to perform automatic threshold scans. To measure the time delay of a
signal, a method was implemented by injecting signals to the pixels. This injections allow
to do test measurements without the need of signals from actual particles. The range
of the threshold tuning (individual adjustment of the global threshold) was estimated to
be (41.521± 0.150)mV. Several attempts to alter the delay of the injection signal with
different configuration of the injections and the tune values for the high threshold were
not achieved within the current available range of the MuPix8. This result indicates that
the pixel to pixel delays in the signal are not caused by time walk and are not amplitude
dependent.

i

Zusammenfassung

Im Rahmen vom Mu3e Experiment am Paul Scherer Institut wurde der MuPix Sensor
entwickelt. Dieses Experiment sucht nach dem µ+ −→ e+e−e+ Zerfall. Dieser Zer-
fall ist laut dem Standardmodell, wegen der Verletzung der Leptonfamilienzahl, nicht
erlaubt. Ziel dieser Arbeit ist es, die ortsabhängige Signalverzögerung zu minimieren.
Diese Verzögerung beeinflußt die Zeitauflösung des Sensors. Als Teil dieser Arbeit wurde
ein Algorithmus entwickelt, welcher das selbständige Scannen der Schwelle ermöglicht.
Um die Zeitverzögerung des Signales zu bestimmen, wurde eine Methode implementiert,
welche auf Einspeißung von Testsignalen basiert. Diese Testsignale erlauben eine Messung
ohne einen Teilchenstrahl. Der Verstellbereich der individuellen Schwellenwerte wurde auf
(41.521± 0.150)mV geschätzt. Trotz mehrerer Versuche, konnte die Verzögerung des
Signals nicht variiert werden. Die Ergebnisse zeigen, dass die Signalverzögerung zwischen
einzelnen Pixeln nicht von der steigenden Flanke des Signals abhängt.

ii

Contents

1. Introduction 1

2. Particle detectors 2
2.1. Semiconductor detectors . 2
2.2. HV-MAPS . 3
2.3. MuPix8 . 4

2.3.1. Readout . 4
2.3.2. Time walk corrections . 5
2.3.3. Injections . 6
2.3.4. Tuning . 7

2.4. File structure . 7

3. Experiment 9
3.1. The experimental set-up . 9

3.1.1. Software . 9
3.2. First measurements . 12
3.3. Injecting several pixels . 15
3.4. Threshold scans . 16

3.4.1. Evaluating the threshold scans 19
3.4.2. Alternative method . 23

3.5. The time delay . 24
3.5.1. Synchronising the timestamps 24
3.5.2. Measurements of the time delay on a single pixel 27
3.5.3. Measurements of the time delay on a small area of pixels 27
3.5.4. Measurements of the time delay on a single row of pixels 30
3.5.5. Measurement of the time delay on the whole matrix 32

3.6. Tuning . 34
3.6.1. Determining the range of TDAC1 35
3.6.2. Methods to change the time delay 36

4. Conclusions and outlook 38

Bibliography 40

Appendix A. Threshold scans 41
A.1. Figures of threshold scans with counts from the pixel at (24,100) 41
A.2. Figures of the threshold scans with area counts 44
A.3. Time delay measurements . 47

iii

A.4. Figures of the threshold scans for different values of TDAC1 47
A.5. Figures of the time delay measurement for different values of TDAC1 . . 48

iv

1. Introduction

The advancements in modern particle physics can in part be attributed to the ad-
vancements in the modern technologies that allow for the detection, identification and
analysis of radiation. But often in science, the requirements for an experiment exceed
the capabilities of current technologies. In these cases, it is up to the investigators, to
develop new technologies that fulfil those requirements. This is also the case for the
topic and subject of investigation in this thesis: the MuPix8.

As part of the Mu3e experiment at the Paul Scherer Institute the MuPix, a silicon
based high voltage monolithic active pixel sensor, was designed. This particle detec-
tors offer excellent vertex and time resolution. The MuPix8 is the first large prototype
of the MuPix series. And like every new prototype with so many new features, there
are bound to be some issues.

One of the issues is position dependent signal delays. This means that even simultane-
ous events could be given different timestamps and thus reduce the time resolution of
the sensor. The topic of this thesis is to investigate how the size of this sensor affects
its time resolution and try to improve the resolution by applying threshold tuning.

1

2. Particle detectors

Across many fields of physics, particle detectors play a central role. They allow for
the study of different structures, levels of radiation, particle composition and many
other things. There are different particle detectors with specific applications.

2.1. Semiconductor detectors
One of the types of particle detectors is the semiconductor detector. As the name
indicates, the material used for these detectors is a semiconductor crystal. They rely
on the small energy gap, the energy difference between the valence band and the con-
duction band, to operate. The energy gap in a typical semiconductor is about 1eV.
This semiconductor can be cooled down (e.g. to the temperature of liquid nitrogen)
making sure that all the electrons are not thermally excited and remain in the valence
band. The incident radiation could transfer enough energy to one of this electrons,
to make the jump to the conduction band. With an electric field and the proper
electronics, this charge can be collected and the radiation is detected.

Instead of cooling a regular semiconductor, one could also use a reverse biased semi-
conductor diode to avoid thermal noise. The diode is a semiconductor crystal with
a so-called p–n junction. To create a p–n junction, one has to first has to have to
separated parts of the crystal with different doping. A semiconductor, like silicon, is
doped by adding impurities to the crystal (normally one impurity for every million
lattice atoms [1]). The n–doped or n–type semiconductor has impurities with an extra
electron, which is more weakly bound. The counter part of this is the p–type semi-
conductor, which has impurities with an electron less. The absence of the electron,
called hole, allows the charge movement since electrons from adjacent atoms can move
to the hole easily.

In a zero biased p-n junction, these two types of semiconductors are brought together.
The diffusion current forms as the electrons from the n–semiconductor and the holes
of p–semiconductor recombine. After the recombination, the impurities are left elec-
trically charged. This means, the p–side has a net negative charge and the n–side has
net positive charge, since the hole is now occupied by an electron, the p–impurities
now have an extra electron, and vice versa for the n–impurities. The electrical field
produced by this charges opposes the diffusion current and an equilibrium is reached.
The electrically charged area at the junction is called the depleted region.

2

P-substrate

N-well

Particle

E field

Figure 2.1.: Schmatics of a HV-MAPS [3]

If one applies a voltage to a diode so the n–part is connected to the positive terminal
of an electrical supply, one says that the diode is reverse biased. Depending on the
strength of the applied voltage, the size of the depleted zone can be modified.
These detectors have higher density than other detectors (e.g. gas detectors). This
leads to a higher energy loss per ionizing particle (which allows for thinner sensors)
and the creation of more electron–hole pairs (compared to the ion–electron pairs in a
gas detector). The result is a larger number of charge carriers for the same amount
of energy, which leads to a better energy resolution. Another advantage is the high
mobility of the charges in the semiconductor, which allows the charges to be collected
very quickly, making them ideal for experiments with high event rates.

One member of this group of detectors is the silicon detector. Since many electronic
components are built using silicon, the implementation of silicon to built a detector
allows for a good integration with the surrounding electronics [2].

2.2. HV-MAPS
In 2007 Ivan Perić proposed a new type of particle detector. The detector is a high-
voltage monolithic active pixel sensor (HV-MAPS). The sensor itself is divided into
multiple pixels. Each pixel of the sensor, as shown in Fig. 2.1, implements a deep
weakly n-doped well in a p-doped substrate. When the junction is reversely biased,
the depleted region becomes relatively thick, even to the point of overlapping with
the neighbouring pixels and leaving no insensitive areas. The passing through of an
electrically charged particle, generates electron — hole pairs. Thanks to the high volt-
age applied between the substrate and the n-well the collection of the charges is done
by drift and not by the much slower diffusion. The read-out is done by the CMOS
(complementary metal-oxide-semiconductor) logic inside the n-wells. In particular,
every pixel has an amplifier inside the wells [3].

As part of the Mu3e experiment, an experiment looking for the lepton-flavour violating
decay µ+ −→ e+e−e+, the MuPix was proposed. The MuPix is a silicon based pixel
detector based on the HV-MAPS technology, optimised for untriggered running.

3

2.3. MuPix8

submatrix
A

submatrix
B

sub-
matrix

C

digital periphery

pixel matrix

bias blocks & pads

10.8 mm

1
9

.5
m

m

128 columns

48 48 32

2
0

0
 r

o
w

s

Figure 2.2.: The MuPix8 layout.

There are several versions of the MuPix to
date. The one used during this project is the
MuPix8. These sensors can be made really
thin (to values below 50µm) and have a fast
charge collection and built-in zero-suppression
[4].

The MuPix8 is composed of three matri-
ces. The first matrix, matrix A, has 48
columns, the same as matrix B. The ma-
trix C has a total of 32 columns. Dur-
ing this project, only the matrix A was in-
vestigated. The size of each pixel is 80µm ×
81µm. This makes the MuPix8 the first
large prototype of the MuPix series with an
area of 1cm × 2cm [5] (see Fig. 2.2). It
is still being investigated which effects the
large size of this prototype has on its perfor-
mance.

2.3.1. Readout
As shown in Fig. 2.3, each pixel has an amplifier. The amplified signal is driven in two
different ways from the pixel to the periphery. For the matrix A, the signal is voltage
driven, while for matrices B and C the signal is current driven. For each column there
is a readout block with 200 cells, one for each pixel in the column. These readout
blocks are on a non-sensitive area of the sensor (digital periphery in Fig. 2.2). A given
cell receives the output signal of its corresponding pixel and from it, it generates in-
formation about the hit: timestamp, row (pixel address is given in a tuple of column
and row) and amplitude.

The hit information in the read out cells is retrieved by the end of the column block
(EOC). The EOC just collects the first read out cell with a stored hit. In a similar
manner, the information stored in the EOC is collected by the state machine. This is
achieved by taking the stored information of the first EOC with a hit. Finally, the hit
information is completed by storing the column number of the corresponding EOC [7].

In each column block only one hit can be copied to the EOC, which means if there are
several hits in one column, only one is read out. This happens simultaneously for the
different columns, so afterwards, in the case of multiple hits, there should be several
EOC storing hit information, which are read out one by one. When this is done, the

4

Pixel Periphery

sensor CSA

comparator
tune
DAC

threshold

baseline

source
follower

test-pulse
injection

readout

integrate
charge

amplification

line driver

digital outputAC coupling
via CR filter

per pixel
threshold
adjustment

Figure 2.3.: Schematics of the electronics of the pixel and the periphery [6]. This
diagram was originally designed for the MuPix7 (here modified). It shows
the main components of the pixel electronics, with the exception of the
two different form of tune DAC, TDAC1 and TDAC2.

next series of hits (one per column) can be read out following the same scheme.

The hits are then sent out serialised on a 1.25Gbit/s low-voltage differential signalling
(LVDS) link.

Figure 2.4.: Left: readout using the two threshold mode. Right: readout using the
ADC threshold mode [5].

2.3.2. Time walk corrections
In the MuPix, to time a signal, a fixed threshold is used. When the pulse crosses
over the threshold, the time is recorded. This timing technique is dependent on the
amplitude of the pulse, as shown in Fig 2.5. For two pulses with amplitudes U1 and U2

5

respectively and U1 >U2, a fixed threshold should give time difference of ∆t= t2− t1,
which should be positive, i.e. the second pulse is detected later because of its smaller
amplitude. This ∆t is known as time walk [9].

Th
re

sh
old

t tFigure 2.5.: Time walk of two pulses with
different amplitudes while
threshold triggering [8].

To correct this effect, the MuPix8 imple-
ments two different modes (see Fig. 2.4).
The first one is the two threshold mode.
As the name says, two thresholds are
used, denominated low threshold (TH
low) and high threshold (TH high).
When the low threshold is crossed, the
time measurement is taken. This can be
set to a relatively low value (near noise
level) to reduce the time walk. The sec-
ond threshold is set to a higher value and
is used simply to confirm that the sig-
nal that crossed the low threshold was
in fact the searched signal. The sec-
ond mode is the ADC threshold voltage
mode. For this mode a constant thresh-
old is used to time the signal. When this
threshold is crossed, a timestamp is gen-
erated and a second linear rising thresh-
old is activated. When the signal meets
the ramp signal, a second timestamp is
stored. This allows for a correction of
the time walk by using the signal size.

2.3.3. Injections
For lab measurements, it is possible to simulate events by injecting a signal into any
given pixel. This injection can be set for a pixel of choice with a given pulse width
and amplitude. The pulses can be sent in a fixed number or constantly with a given
frequency. The injections can also be sent to several pixels at the same time, covering
areas of different sizes. It will be discussed, how efficiently large areas can be injected.
But in principle, it is possible to configure injections for the whole matrix.

On the left of Fig. 2.6 a digital-to-analogue converter (DAC) is shown. This DAC
decides the voltage V that is used to charge up a capacitor. When the switch is closed
the pulse is then released, routed to a configured destination (a pixel or an area of
pixels) and capacitively coupled into the pixel sensor. The L is a placeholder for a
multiplexing logic. This logic decides which pixels are going to be injected.

6

DAC V L

Pixel

Figure 2.6.: Sketch of the electronics of an injection. The L stand for a complicated
circuitry that reroutes the injection to a specific pixel address or a specific
area of pixels.

2.3.4. Tuning
Because of its large size, the MuPix8 has lost some time resolution compared to its
predecessor. Two simultaneous events appeared to register two different timestamps.
One possible reason for this is the drop of voltage across the large area of the chip.
This drop of voltage causes the amplifier in each pixel to produce pulses of varying
sizes. Another possible explanation is that pixels that are farther away from the dig-
ital part have a longer electrical route. A longer line means higher capacities, which
in turn means a longer charging curve. Combining these effects with timewalk could
explain the delay in timestamps.

Tuning is the change of the threshold for every pixel individually. By applying changes
in the individual thresholds the timing of the individual signals can be shifted to make
the time differences between all pixels minimal and thus improve the time resolution
of the sensor. As already discussed in section 2.3.2, each block cell has two thresholds.
Tuning allows to manipulate these two values separately.

2.4. File structure
For this project, besides understanding the hardware, it is also important to under-
stand how to use the software and the way that measurements are stored in the files
that are analysed later. The measurements are stored in so called block files. The
block files are an ensemble of telescope frames. The telescope frame is the container
in which the hits are stored. And finally, each hit contains all the hit information,

7

i.e. pixel address, timestamp, etc. Besides of storing the hits, the telescope frame also
has information about the triggers.

A typical measurement would be stored in a single block file. So if, for example, one
wanted to create a hitmap (a 2D histogram that shows how many hits per pixel were
registered) the block file containing the measurement would be accessed. The next
step is looping over all the telescope frames, and from each frame collect all hits.
Then, from each hit, extract the column and row information and finally add a count
to the corresponding position on the hitmap.

As all the hits, the telescope frames also have their own timestamp. The clock of
the blockfile has a frequency of 500MHz, while the clock of the telescope frame has
a frequency of 125MHz. The hit timestamp is stored in the telescope frame with a
10bit unsigned integer, meaning it has a range between 0 and 1023.

8

3. Experiment

3.1. The experimental set-up
In the scope of this thesis, the MuPix8 was investigated using a set-up containing the
following parts:

1. MuPix8: the sensor and its properties have been discussed in section 2.3.

2. Printed circuit boards (PCB):
The PCB handles the connections of the sensor to the periphery. This includes
connections to power supplies with different voltage levels and signal connections
to the FPGA. The sensor itself is bounded to small PCB (called insert). The
insert can be easily plugged into the bigger PCB. See Fig 3.1.

3. Field programmable gate array board (FPGA):
The FPGA is a piece of electronic capable of driving and receiving data with
high rates. The FPGA plays an integral role in the read out system of the whole
set-up.
The FPGA has phase-locked loop from which it generates two synchronised
clocks, one with 125MHz and one with 500MHz, which act as a reference for
the sensor. It also generates the injection signals and sends them to the PCB.
The FPGA sends the data over to the PC via PCI express. See Fig. 3.3.

4. PC: The PC receives the data from the FPGA, process it and stores in the hard
drive. Therefore, a costume software package is available which includes a driver
for the FPGA board, read out and control, as well as analysis software for the
MuPix8.

5. Power: Three different voltages need to be supplied to the PCB board to the
sensor. The high voltage source takes care of the fast charge collection.

3.1.1. Software
Throughout this project, all measurements were done using a piece of software called
single. With single, one can configure injections, set board and chip DACs, mask or
tune pixels and start and stop measurements. Most of the functions implemented
during this thesis, rely on the original code of this software. single is part of the
mupix8-daq repository.

9

Figure 3.1.: The MuPix8 on the PCB.

Figure 3.2.: Power supply and high voltage source

10

Figure 3.3.: FPGA and GPU

Figure 3.4.: Screenshot of the main window of the single software.

11

Figure 3.5.: Screenshot of the tab containing the functions implemented in this thesis.

3.2. First measurements
The first step of this experiment was acquiring some sense of how the position of the
pixel affected its timing. Getting an initial notion of the problem was vital since it
allowed the whole process that came to be more objective-oriented. The general idea
was to measure how much the timing of an event changed across the area of the chip.
The easiest way to this would be to simulate an event, using injections, and seeing
how the signals changed, specifically how their forms changed, for different pixel loca-
tions. With the help of an oscilloscope, it was possible to measure the signal that was
being injected into the pixel and compare it with the signal coming from the hitbus,
the output of the comparator. Using the single software, the injection could be set to
certain parameters, the most important right now being the pixel address. Addition-
ally, with the software the hitbus had to be set to, at least, the right column (rows
are shorted inside a column), so the signal that was being received by the target pixel
could also be observed by the oscilloscope. With the oscilloscope, one point on each
signal was selected to have a reference on how they shifted. These two points were set
at 85% of the amplitude of the pixel output signal and 65% of the incoming injection
signal. With the measurement function of the oscilloscope, the time difference of these
two points was determined for different pixels, effectively giving a relative delay that
could be compared for the different pixels. How this looked is shown in Fig. 3.6. This
procedure was repeated for several pixels.

12

Figure 3.6.: Screenshot of the oscilloscope showing initial measurements of a relative
time delay.

This measurement was done over a period of a few minutes to allow for more counts
and improve statistics. The mean value of these delays was recorded for 15 different
pixels (see table 3.1). Finally, these measurements were plotted in Fig. 3.7, where the
coordinates are given by the position (column, row) of the pixel and the value of the
delay is displayed using colour.

Even though this is a really rudimentary measurement, it shows the phenomenon
pretty well. It shows a clear pattern of the delay increasing as the position gets far-
ther from the origin.

13

Table 3.1.: Delay of injected and hitbus signal measured with the oscilloscope
Column Row Average delay [ns] Standard deviation[ns]

0 0 323.5 16.9
1 50 369.5 12.0
1 100 382.5 30.1
1 150 366.5 22.2
1 195 419.6 32.4

20 5 353.0 15.3
24 50 396.7 12.8
24 150 441.3 21.7
46 5 447.3 12.4
46 50 439.7 19.2
46 100 457.6 18.9
46 150 461.0 20.5
46 198 448.6 17.1

0 10 20 30 40

Column

0

25

50

75

100

125

150

175

R
ow

300

320

340

360

380

400

420

440

460

T
im

e
d

el
ay

(n
s)

Figure 3.7.: Relative delay between injection and the hitbus for a few pixels across the
chip.

14

Having done this first measurement, the next step would be to measure this for all
pixels.

3.3. Injecting several pixels
Measuring all the pixels of the sensor can be done in two different ways. The most
straightforward approach is to scan through all pixels, injecting one by one. With a
total area for the first matrix of 9600 pixels, doing this by entering the address of the
pixel for each entry is not reasonable. The alternative is to automate this within the
software framework. So a function was written that did the following:

1. sets the injection address for one pixel;

2. reconfigures the chip;

3. starts a measurement;

4. waits some time, while measuring;

5. stops the measurement;

6. repeats for the next pixel.

The measurement itself requires some time since a sufficient amount of pulses has to
be injected to have considerable statistics. Additionally, the configuring of the pixel
also takes about 4 to 5 seconds. This results in at least a window of 15 seconds per
pixel and 9600 pixels, giving a total of 40 hours. To avoid these long waiting periods,
an alternative method had to be found.

The second possibility would be to inject several pixels at the same time. Since it
is possible from the software to set an injection vector that covers the whole matrix,
this seemed to be the most practical approach. On the one hand, it would drastically
reduce the measuring time from about 40 hours to the time it took to measure a single
pixel. On the other hand, if all injections were fired at the same time, it eliminates the
need to look for a reference time, since all the events happening at the same time and
it would be as simple as subtracting the timestamps to find out how they were delayed
with respect to each other. But this does not work either. When the injection vector
is set to cover the matrix completely, the current to generate the injection has to be
distributed over the whole area. This constrains the charge with which the pixels are
being injected. Why this is a problem is part of the discussion of section 3.4.1.

Still, the possibility remains to inject multiple pixels at once. In order to achieve
this, it was also necessary to find out, how many pixels can be safely injected without
compromising the efficiency and also leaving enough room to tune the pixel.

15

3.4. Threshold scans

600 650 700 750 800

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure 3.8.: Threshold scan of a single pixel at position (24,100)

To achieve this, it would be appropriate to measure hit counts for different values of
the threshold while expecting the same number of hits. To measure counts for differ-
ent values of the threshold, it is important that the source of the counts is constant
and reliable. Again, the best and simplest solution is to use the injections. For each
injection, the frequency and the amplitude of each pulse can be set, so there is a clear
value to expect for the number of counts and also when the counts should drastically
fall. This simple idea comes with several challenges, mainly how to store the measure-
ments and how to program the scans.

Initially, the scans were very simple. Take a single pixel (configure the injection
address) and start a measurement, inject it with a given frequency and amplitude
(almost always f = 100Hz and A = 750mV), wait for a couple of seconds, stop and
store the measurement, increase the value of the threshold by a certain amount and
repeat. The first problem was, that at some point, the threshold value will be so high
that no events are going to be detected. Because of the way the files were written in
the program, this would always cause the program to crash. This was fixed and the

16

program was now capable of storing files were no events happened. Afterwards, the
measurement of a single scan would be saved across several files, each containing the
information of a single step of the scan. But doing constant large steps like this is
not helpful either. The counts remain constant for low threshold values until a point
is reached where the counts sharply drop. Measuring this way means having several
measurement points with high counts and on the other side several points with zero
hits and nothing in between. Finding the region where the counts dropped, meant
analysing the initial measurement and repeat the process for smaller steps around the
area between the last point with high counts and first with zero counts.

To eliminate the need of having to do a manual analysis between the two measure-
ments, an algorithm was developed. Essentially, the scan would work in the same way
as it already did, but after finishing up each step, the measurement file (block file)
would be opened and analysed. The analysis consisted of a simple hit count for the one
pixel that was being injected, ignoring all others, suppressing any possible unwanted
events. This number was stored in a variable which at the end of each iteration (or
step) would become the value of another variable storing the number of counts of the
previous step. The program would decide if the next step should have been a smaller
one if the difference between the previous counts and the current counts is larger than
a certain criterion (e.g. 30% of the initially expected counts). Since there is only one
region where the values change suddenly, once this point was reached, a variable will
switch (from false to true), which in turn lets the program only do small steps. The
program continues scanning in small steps until the counts fall below a previously set
limit (e.g. 10 hits), then switch the boolean variable back to false. All this process is
constrained on both sides by the starting and ending values of the threshold scan.

This process is described again graphically on Fig. 3.9. The variable on slope is ini-
tially set to false. The first value of previous counts, before the first measurement, is
estimated from the time taken for the measurement multiplied with the frequency of
the injections. A is the smallest value that is no longer tolerable for a jump of counts
between steps. The value of B is the lower limit. The value of upper limit refers to
the upper limit of the threshold scan (this was almost always set to 850mV).

This function was developed further. The later features include the capability of
setting injections to any desired area of pixels, while still counting a single pixel within
this area or counting all pixels, with just a few modifications of the original code. At
the core of this function, sits the counter. In the early stages, the counts were done
reading block files, which were written on each step of the scan. A typical scan would
have about 35 steps. Since a block file contains much more information than just the
number of hits for one or several pixels, this is just wasteful programming. The final
version of this function has all the capabilities of the previous versions but does the
counts on the fly. This means that there are no extra files being written for every step
but also that there is no clear separation between steps. Until this point, beginning a
measurement meant creating a new clean file and just writing the new events into it.

17

start

measure

count

diff =
previous counts - counts

previous
counts

true?on slope

diff > A?

small step - large step

on slope = true

counts < B

large step previous counts =
counts

upper limit?

finish

small step

no

yes

no

yes

no

yes

yes

no

Figure 3.9.: Flowchart of the initial algorithm of the threshold scans. The variable
on slope is a boolean which is initially false and becomes true when the
area of rapid change has been reached. A is a number above the largest
difference that is accepted before one has to assume that the slope was
skipped. B is a certain minimum of counts, i.e. the counts expected for
the second plateau, which tells the program that the area of the slope
has been abandoned and large steps can be taken again. upper limit is
the upper bound for the threshold. Since the scan starts at the plateau,
at the beginning the way to read this flowchart correctly would be to go
once through answering no to every question.

18

For the current version, the program does not start any new measurements (or runs)
so the hits are not neatly separated. Still, this just means that the two variables for
the counts (counts and previous counts) are not enough and that two more similar
variables must be defined: total counts and total previous counts. These had to be
used to find how many counts there were in any given step, while the other two still
participated in the logic as explained before.

3.4.1. Evaluating the threshold scans
The original purpose of these threshold scans was to find out the largest area of pixels
that could be injected at once, to minimize the time required for measuring. This
would mean doing a fit and comparing measurements of injections of areas of different
sizes. The distribution of the points is a threshold-like function (see Fig. 3.8), with
the characteristic S shape of a sigmoid curve (also simply referred to as s-curve).
Therefore, a scaled, displaced¸ weighted and flipped sigmoid curve can be used to fit
this data [10]. The explicit form is:

f(U) = A

1 + exp(B (U −C)) . (3.1)

Here f(U) is used to determine the number of counts for any given voltage setting.
The variables A, B and C in (3.1) are the highest number of counts, a factor that
describes how step-like the function is (the higher the value the more step-like the
function) and where the counts have fallen to half of the maximal value, respectively.

To evaluate different s-curves for injected areas of different sizes, the most important
factor is C. The measurements show that injecting a larger area displace the whole
curve to the left. This means that the counts fall for lower values of the threshold.
This displacement can be generalised as the variation of C. In other words, C is a
measurement of how efficient the pixel or the area of pixel is. The value of B can
be used to estimate the noise. To gain more information about this relation between
the number of pixels being injected and the drop in efficiency, several threshold scans
were recorded.

As already mentioned, there are two possibilities for counting. One could count by
picking one single pixel of the injected area. The alternative would be to count the hits
of all pixels in the injected area. The latter may offer better statistics, since not all
pixels are equally sensitive. For the purpose of finding out, how large the injection area
can be set, the second method is better suited to estimate the pixel to pixel variations.

Two sets of measurements were taken, one doing single counts and one doing area
counts. The measured values were recorded in figures (see sections A.1 and A.2). In
order to do a more quantitative analysis the measurements were fitted. The estimated
fit values can be found on tables 3.2 and 3.3.

19

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

9600 px

1600 px

1225 px

900 px

625 px

400 px

225 px

100 px

25 px

1 px

Figure 3.10.: Comparison plot of several threshold scans with different injected area
sizes. For all scans, the counts were done on the pixel (24,100).

Table 3.2.: Fit values of the s-curves for different amount of pixels. The counts were
taken from a single pixel at (24,100).

Pixels A B [mV−1] C [mV] χ2

1 510.175±1.150 0.384±0.007 816.429±0.057 0.601
25 509.475±1.864 0.347±0.010 816.991±0.095 0.553

100 505.029±6.946 0.295±0.028 814.090±0.393 2.671
225 506.367±6.297 0.298±0.026 810.449±0.350 6.610
400 508.580±1.657 0.338±0.009 806.026±0.084 1.267
625 510.048±1.189 0.289±0.005 800.936±0.063 2.170
900 509.441±1.470 0.274±0.005 794.038±0.082 2.195

1225 509.654±1.492 0.249±0.005 786.468±0.086 2.272
1600 508.962±1.936 0.246±0.006 777.448±0.107 2.176
9600 511.115±4.565 0.163±0.005 640.238±0.213 9.567

20

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

9600 px

1600 px

1225 px

900 px

625 px

400 px

225 px

100 px

25 px

1 px

Figure 3.11.: Comparison plot of several threshold scans with different injected area
sizes. For this, the counts were done using all pixels. Furthermore, the
counts were divided by the area as a kind of normalisation.

Table 3.3.: Fit values of the s-curves for different amount of pixels. The counts were
taking from the whole injected area.

Pixels A B [mV−1] C [mV] χ2

25 12784.147±64.921 0.130±0.003 817.394±0.216 0.348
100 50707.060±189.056 0.117±0.002 813.020±0.173 0.163
225 114154.491±501.875 0.104±0.002 807.278±0.216 0.590
400 203110.934±1062.776 0.097±0.002 801.111±0.258 0.615
625 317659.952±1137.889 0.096±0.002 795.421±0.179 1.241
900 450679.807±1071.177 0.091±0.001 787.656±0.121 1.156

1225 613958.170±1802.365 0.086±0.001 779.172±0.150 1.282
1600 801443.600±2462.747 0.085±0.001 771.958±0.166 2.151
9600 4827140.591±16540.030 0.082±0.001 637.038±0.121 7.479

21

Fig. 3.10 and Fig. 3.11 show the expected behaviour. The measurement curves shift
to the left with the increasing number of pixels. In this case, the shift comes not from
a drop of the pixel efficiency but from the decrease of the injection amplitude.

As mentioned in section 2.3.3, the injection is basically done by a large capacity that
charges another smaller capacity. In the case of a single pixel, the difference in ca-
pacities is so large that for the pixel, the charge of the injection capacity acts as a
constant voltage source. With an increasing number of pixels, the total capacity that
has to be charged increases. Because of this, the difference drops. The result is that
the amplitude of the injection decreases for every pixel.

Finally, the displacement of any s-curve can be explicitly calculated, if one defines
the C value for one pixel as reference. This means the displacement is given by the
difference between the reference value and the values for any given amount of pixels.
The calculated values, using the C values from table 3.2, can be seen in Fig. 3.12.

The resulting displacement were plotted for the first nine measurements using a linear
plot. The fit result for the slope of the linear function m = (0.0252±0.0003)mV/px
(χ2 = 3.79). As already mentioned, for a small collection of pixels, the difference of the
capacities is so large that the voltage coming from the injection is almost a constant
voltage source. This is reflected in Fig. 3.12 for the linear region. For a much larger
area of pixels, the total capacity to be injected is comparable to the injection capacity,
and the behaviour is no longer linear.

Finally, it should be noted that for the area counts, the value of B changes more
drastically than for the single counts. This would normally indicate a noisier mea-
surement. But if these measurements were done again, for any other single pixel, they
would most likely have a similar shape to the one seen in Fig. 3.10. The decrease in
the value of B comes, in this case, from the overlapping of s-curve from all pixels in
the injected area. Even if these all have a sharp step, the superposition of the small
variation of the C values, generate a flatter s-curve.

22

0 2000 4000 6000 8000 10000

Number of injected pixels

0

50

100

150

200

250
D

is
p

la
ce

m
en

t
(m

V
)

Linear fit

Displacement

Figure 3.12.: Relative displacement of the s-curves when injecting different amounts
of pixels. The C values needed to calculate the displacement were taken
from table 3.2. A dash line shows a linear fit of the first nine measurement
points.

3.4.2. Alternative method
As an alternative to doing a complete threshold scan and fitting, a binary search would
also result in determining for which voltage the counts have dropped to half of the
initial value. This can only be done, because the expected values of the counts are
known. In this case, while injecting, the counts that are expected are given by the
product between the number of pixels being injected, the time set for each step of the
scan and the frequency of the injections.

For the binary search to work, the threshold voltage must be set midway between to
the beginning and the end of the scan, i.e. if the scan were to be between 600mV
and 900mV, the initial value would be set to 750mV. At this voltage, the program
would measure for a given time and return a number of counts. If the counts are
over the half of the initially expected value, then the voltage is set to value midway
between the current value and the end point. Otherwise, if the number of counts is

23

smaller than half of the initial value, then the next voltage setting is halfway between
the lower limit and the current value. By redefining the upper and lower limits like
this, the range where the searched value becomes increasingly smaller. Eventually,
the voltage for which the counts have fallen to half is found. A graphical description
of this process is given on Fig. 3.13.

Even though this process might be quicker in finding the displacement of the whole
curve, it does not provide other pieces of valuable information like the other method
does. At the end, it becomes a matter of what information is needed. To simply
measure how the s-curves are displaced, this becomes the better alternative, because
it will most likely end needing less measurement points and not having to fit the mea-
surements. But by reducing the amount of measurements, the information about the
noise of the pixel (or area of pixels) is also lost.

Because of the limited time available for this thesis, this method was not implemented.

3.5. The time delay
At this point, the expectation was that any pixel would have a relative delay and that
it could be altered by changing the threshold voltage. Figuring out how many pixels
could be injected at once was a matter of understanding how much the threshold for
a single pixel would have to be modified. Ideally, for any given area of pixels, there
would be enough room to change the threshold to correct, or at least improve, the
relative delay while remaining on the first plateau.

The next step would be to figure out how to measure the time delay. Due to the fact
that this is a relative measurement, it is necessary to define a reference. Since the
idea is to inject several pixels at once, the logical reference would be the time at which
the injection was sent. The time delay is then define as the difference between the
injection timestamp and the hit timestamp.

3.5.1. Synchronising the timestamps
After the firmware of the FPGA was modified to store the injection timestamp as
the trigger for every frame, it was still necessary to figure out how these two times-
tamps relate. As already discussed in section 2.4, these timestamps run on different
but synchronised clocks. Additionally, for the hits, there is only 10bits. Meanwhile,
the triggers are stored using 48bits unsigned integers. Because of the difference in
the frequency, it is clear that for every four ticks of the quick clock, the slow clock
ticks one time. This can be easily be synchronised by dividing the timestamps of the
quick clock by four. Because of its larger range, the trigger values have to also be
limited to 1024 possible values that can be taken by a hit timestamp. This is achieved
by taking the modulo 1024 of the already slowed down trigger value. So the formula

24

start

set voltage to
A+B

2

measure

counts

counts= E

Higher
than E? A = A+B

2

B = A+B
2

finish
yes

no

no

yes

Figure 3.13.: Flowchart of the binary search method. Here E is the number of half the
counts, A andB are the lower and upper limits of the search, respectively.

25

0 200 400 600 800 1000

Hit timestamp (a.u.)

0

200

400

600

800

1000
In

je
ct

io
n

ti
m

es
ta

m
p

(a
.u

.)

10

20

30

40

50

Figure 3.14.: 2D histogram showing the injection and the hit timestamp for every
measured hit. The colour bar indicates how many hits had the same
injection and hit timestamp.

to obtain an useful injection timestamp from the value stored in the trigger variable is:

tinj =
(
ttrigger

4

)
mod 1024. (3.2)

The mod in (3.2) returns the remainder obtained when dividing the number before
it by the number behind it (e.g. 10 mod 3 = 1, since the remainder of 10

3 is one). In
this case, it returns exactly the value of injection timestamp, making sure it always
resets when the number reaches 1023. Having done this, the value of tinj should have
the same properties as the hit timestamp.

To verify that the two timestamps were in fact synchronised, a measurement of a
single pixel was taken. The 2D histogram in Fig. 3.14 shows every measurement of
both types of timestamp. This measurement contained around 54,000 hits and was
taken on a single pixel at (15,100).

26

In the ideal case, Fig. 3.14 should be just one straight line. But since some delay is ex-
pected, there has to be an offset between the injection and the hit. In the specific case
of this measurement, this delay is just below 1000 (it will still be estimated precisely
in the next section). Nevertheless, this measurement still proves that the timestamps
are now synchronised, because the line is a diagonal with a slope equal to 1.0

The values on both axes are in the range between 0 and 1023 and are of the units of a
timestamp. This measurement confirms that the frequency for both sets of timestamps
is 125MHz. With a known frequency, the corresponding time for each timestamp unit
can be determined to be 8ns. From this point onward, the time delays will be given
in ns.

3.5.2. Measurements of the time delay on a single pixel
With a well defined reference, the delay can be calculated for any given pixel. The
time delay is that explicitly defined as:

t∗delay = (thit− tinjection) mod 1024, (3.3)

where t∗delay is the difference between the hit and injection timestamp. Normally, the
thit should always be greater than tinjection, but when the former reaches 1023 the
counter returns to 0, while the tinjection is still getting larger. The result of this differ-
ence would be a negative value. To correct this, the modulo is applied. This ensures
that the value obtained is always just the delay between the injection and the hit
signal. Finally, (3.3) is multiplied by 8ns to obtain the time delay as a physical time.
The delay expressed in ns is from now on noted as tdelay.

By inputting all tdelay from every injected pixels in separate histograms and fitting
them, allows to find the best estimate of the individual delays. Fig 3.15 shows a typ-
ical measurement for a given pixel. With the exception of a small amount of outliers,
most pixels show a similar distributions. The outliers come from hits that are stored
in a frame without injection timestamp. No further corrections were applied here,
because these very few outliers do not affect the statistics considerably. The usual
width of the peak in the histogram is normally no more than 3 bins.

3.5.3. Measurements of the time delay on a small area of pixels
After having developed a method to measure the time delay for any given pixel, the
next step was to inject areas of several pixels. At some point, the whole matrix should
be measured. Doing this block by block, seemed to be the quickest and most practical
way to measure.

27

6500 7000 7500 8000

tdelay (ns)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

C
ou

nt
s

µ = (7544.400± 0.005)ns ; σ = (−3.591± 0.002)ns ; A = (74805.343± 48.496)

Figure 3.15.: Histogram and fit for the delay of a single pixel at (33,13).

28

18 19 20 21 22

Column

98

99

100

101

102
R

ow

5500

6000

6500

7000

7500

T
im

e
d

el
ay

(n
s)

Figure 3.16.: Time delay measurement of a small area being injected simultaneously.
The results shown here do not correspond to the actual delays. This is
shown to explain a systematic error that comes from measuring several
rows at the same time.

As a first try, a small area of 25px was injected and the hits recorded. This amount
of pixels is still in the linear portion, and according to the fit of section 3.4.1, the
displacement of the s-curve should be ∆U = (0.6300±0.0075)mV. Given that this
could vary from pixel to pixel, this variation is not large enough to affect the results
of the individual delays. The results of this measurement are shown in Fig. 3.16.

By looking at Fig. 3.16, it may seem as the value of the delay changed strongly be-
tween the rows and remained relatively constant inside a given row. A more careful
analysis of the data showed that the difference between rows is actually an effect of the
read out. As described in section 2.3.1, when several pixels inside a column register a
hit, there is a certain hierarchy. In this case, the information of a single row is written
into a telescope frame, while the rest has not been read out yet. Eventually, every hit
is read out, but every row is filled in different telescope frames.

The problem is that the trigger, or in this case the injection timestamp, is stored in

29

the telescope frame. And since there is only one injection for all 25 pixels, the frames
that follow do not have a proper injection timestamp. A closer look at the delay
values showed that in this case, the hits from row 100 had the trigger in their frame
and had the expected values for the delay. After that, the value stored as the injection
timestamp increased by 640ns (namely, in the following row order: 100,101,102,98,99).

This effect is purely systematic. Still, considering the short time available for this
thesis, the decision was made to not try to measure the delay from whole areas and
rather measure single rows. Complete rows can be measured at the same time, so that
for any injection all the corresponding hits are stored together in one frame. Also, if
that is the case, the method described in section 3.5.2 could be easily adapted.

3.5.4. Measurements of the time delay on a single row of pixels
With a few changes of the code, it was now possible to configure the injections to all
columns of a given row at the same time. After that, measuring the delay for all pixels
could be done, as it was already described in previous sections for every pixel in the
row.

This measurement was repeated with the same configurations to test how consistent
they are. The results can be found in the appendix under section A.3. It should
be noted, that with the same configuration, the relative delay of each pixel remains
almost identical, which is reflected in the colour value for every pixel.

As rough estimate of the time resolution of a single row, the difference between the
maximum and minimum delay was calculated. This method is not ideal, since it relays
on single pixels to estimate a value that could vary strongly for a given pixel, but seen
as larger group remain more homogeneous (with a handful of outliers). The correct
way to calculate the time resolution for a row (or any number of pixels in general) is
done exactly the same way it should be done for a single pixel. Instead of inputting
the time delay for a single pixel in a histogram, the values for all hits of a given row
should be considered. The overlap of the slightly shifted histograms gives a fit Gauss
curve which is logically wider. The time resolution is defined as the estimated σ pa-
rameter for the Gauss curve.

For the measurement in Fig. 3.17, the differences gives an estimate of the time reso-
lution of ∆t= (50.962±0.007)ns.

30

0 10 20 30 40

Column

0

R
ow

7560

7570

7580

7590

7600

T
im

e
d

el
ay

(n
s)

Figure 3.17.: Time delay values for all pixels on row 0.

31

3.5.5. Measurement of the time delay on the whole matrix

0 10 20 30 40

Column

0

25

50

75

100

125

150

175

200

R
ow

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e
d

el
ay

(n
s)

Figure 3.18.: Delay values for every pixel in matrix A.

Having successfully injected and measured the delay of a single row, a measurement
was programmed to iterate through all 200 rows. Between iterations, a sleep function
forces an adjustable waiting period to collect more measurements. In the case of the
measurement shown in Fig. 3.18, the waiting period was set to 100s, which with a
injection frequency of 100Hz totals 10,000 hits per pixel per row.

A waiting period of 100s for all 200 rows is almost 5.6h. Because of some problem
that has not been determined yet, the program crashes after certain number of mea-
surements. This made the measuring process more tedious and lengthy, because every
time the program crashed, a new set of bounds has to be passed. At the end of the
measurement, the program returns a text file containing two columns, one is the run
number (i.e. an identifier) of the block file and the other one is the row. The analysis
of this measurement is done by looping through this file, finding the right block file
and the right row, and repeating the analysis as it was done for a single row. This
means that the process shown Fig. 3.15 had to be repeated for almost all 9,600 pixels.

32

There are a certain numbers of pixels that register non-stop hits. These so called
hot pixels are handled by masking. When a pixel is masked the value of threshold is
adjusted so high, that the pixel is effectively turned off. For these pixels there are no
measurements and the time delay can not be estimated. These are the white rectan-
gles in Fig. 3.18.

The delay is for the most part homogeneous across the whole matrix, with most pixels
registering delays of roughly 7400ns to 7500ns. Also many other pixels show strong
deviations from these values in either direction. But contrary to the expectation (and
to the measurement taken in section 3.2), the time delay does not show any position
dependence. More than anything else, the delay appears to be random for most pixels.
Although the density of pixels with higher delays seems to be larger in the top right
quadrant and towards the center of the chip.

To obtain a better idea of the pixel to pixel variation, it is necessary to compare them
not to the injections individually, but to each other. For this, the pixel at position
(0,0) is defined as a reference. The new definition of the delay is given by the absolute
difference of any other pixel to the reference.

Fig. 3.19 shows the pixel to pixel in more detailed. The mean value of this difference
was calculated for all measured pixels: tdelay = (91.483±2.309)ns.

33

0 10 20 30 40

Column

0

25

50

75

100

125

150

175

200
R

ow

0

200

400

600

800

T
im

e
d

el
ay

(n
s)

Figure 3.19.: Absolute value of the relative delay for every pixel in matrix A to pixel
at (0,0).

3.6. Tuning
Once the measuring techniques had been developed and a first set of measurements
had been successfully done, one could investigate how the adjustment of the threshold
could modify the measured time delay.

For tuning there are three important variables. TDAC1, TDAC2 and VPDAC. The
first two are variables that define an increase in set threshold of a given pixel, for
UHigh and ULow respectively. VPDAC is the factor which defines how large every
step of the variation of the individual thresholds is going to be, i.e. it acts by mul-
tiplying itself with the values of TDAC1 and TDAC2. If the VPDAC is set to zero,
then there is not going to be any variation. The values of TDAC1 range from 0 to
7 and the values of TDAC2 range from 0 to 3. VPDAC takes values between 0 and 63.

34

3.6.1. Determining the range of TDAC1
As a first try, three measurement were taken to see how much the TDAC1 values can
affect the time delay and the efficiency of a given pixel. For this measurements the
value of VPDAC was set to its maximum. TDAC1 was set to three different values
and for each setting a single pixel was injected for a certain amount of time. To test
the efficiency, a threshold scan was done for each setting of TDAC1. The correspond-
ing fits can be found in section A.4 and the fit values can be seen in table 3.5. The
effect on the time delay is documented on table 3.4.

Table 3.4.: Delay values for three different setting of TDAC1. This measurement was
recorded from injections set to pixel (15,15).

TDAC1 µ [ns] ∆µ [ns]
0 7526.360 0.008
4 7543.720 0.008
7 7517.112 0.008

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
o
u

n
ts

TDAC1 = 0

TDAC1 = 4

TDAC1 = 7

Figure 3.20.: S-curve comparison for different values of TDAC1.

35

Two observations can be made from these measurements. The first is that the delay is
weakly influenced by the tuning of UHigh. In fact, the small change in the time delay
does not seem to be directly related to the value set for the threshold.

Table 3.5.: Fit values of s-curves for different values of TDAC1
TDAC1 A B [mV−1] C [mV] χ2

0 509.574±1.555 0.513±0.015 834.983±0.072 0.814
4 510.174±1.038 0.471±0.009 811.913±0.047 3.037
7 509.540±1.957 0.610±0.024 793.462±0.078 22.498

The second one is that efficiency is much more sensitive. It is apparent how the s-
curves are shifted for the non-zero values of TDAC1. Under the assumption that this
behaviour can be generalized for any other pixel, this measurement would also allow to
calculate what the combination of VPDAC=63 and TDAC1=7 is equal to in mV, and
thus the range of the tuning values. Considering that TDAC1=0 represents no shift
of the s-curve while TDAC1=7 represent the maximum shift possible, the difference
between the two C for the respective tune values, should result in good estimate of
the range of the tune values. By doing this, the range of the tune values is estimated
to be (41.521±0.150)mV.

3.6.2. Methods to change the time delay
The fact that the time delay was so not changed even when applying the maximal
tune value was unexpected. Trying to understand why this happened, led to trying
different methods just to see if it was possible to change this value by adjusting the
threshold somehow. The first idea was supported by the fact that the change in the
threshold did not cause time walk. This must mean that the leading edge of the signal
was so steep that it did not make much difference for the timing. Following this train
of thought several more measurements were done with lower injection voltages.

Initially, the value of the injection was set to be just above of the threshold. This did
not make any difference in the time delay either. Soon after, it became clear that the
value that is set in the software for the injection does not correspond to the signal
being injected to the pixel, so the pulse being injected was still too high and steep.
After that, the voltage of the injection was configured in such a manner that it was
barely above of the point where the counts began to fall. This could have been more
quantitatively by determining the signal height via the threshold scans, but was not
implemented because of the limited time in the scope of this project.

36

Table 3.6.: Time delay at the edge of the plateau with injection at pixel (30,130) with
a moderate amplitude.

TDAC1 µ [ns] ∆µ [ns]
0 7604.264 0.008
1 7619.464 0.008
2 7617.856 0.008
3 7618.536 0.008
4 7645.672 0.008
5 7630.872 0.008
6 7664.288 0.008

Measuring this way did show a change in the signal. By setting the real injection
amplitude to a value just above the threshold, increasing the tune values caused the
counts to drop and the distribution of the time delays to get wider. The fits used to
determine the time delay did show other values for the time delay but also showed a
drop in the resolution. This is counter-productive.

Finally, having calculated the range of the tune values before, the decision was made
to measure again using a small injection and setting the high threshold just below
the real injection voltage by 43mV. The idea was to see what would happen to the
time delay while measuring an injection amplitude about 150mV above the 500mV
baseline, while changing the tune values at the right end of the first plateau. Just like
all the other methods, this does not show any significant changes in the values of the
time delay. The measured values can be seen in table 3.6.

37

4. Conclusions and outlook

During the development of this project, the main goal was to study and try to im-
prove the time resolution of the sensor by using the tuning available on the sensor.
To achieve this, new software functions and analysis tools had to be implemented.

The first development were the automatic threshold scans. This function allows to set
the starting and ending thresholds of the scan, the time per step (this combined with
the injection frequency gives the number of injections per step) and the size of two
different kinds of step (big steps for the plateau and small steps for the slope of the
s-curve). The program is also capable of setting the injection vector either to a single
pixel or an area of pixels. It also lets the user choose from two possible methods to
do counts while scanning the threshold. The output of the scan is a single file that
contains the all the voltage values that were set during the scan and the corresponding
number of counts. Although, the threshold scans were never implemented as originally
intended (because of the problem described in section 3.5.3), they still are extremely
helpful.

Even inside this same project, the threshold scans proved to be useful in ways that
were not directly related to the reason why they were implemented in the first place.
They were used to find out how the tune settings translate to the adjustment of the
voltage. Furthermore, the scans can be used to find out the real amplitude of a given
signal. This could be especially helpful when using the injections, since the value set
in the software does not correspond to the real injection.

In the scope of this project, a method for measuring the time delay between the in-
jection and the hit timestamp was developed. If one defines a reference value, this
method can be used to find out how two or more pixels are delayed in respect to each
other, when recording simultaneous events. This is of great relevance since the prob-
lem of the time resolution still needs to be solved. Based on this new functionality, a
new feature of the single software was implemented to measure the time delay for the
whole submatrix A of the sensor.

There is still room for improvement for these new features. The threshold scans and
the method for measuring the time delay work well, but they rely on the sleep com-
mand that freezes the whole graphical interface. A possible solution for this problem
would be to implement a dedicated thread, were the waiting period does affect the
graphical interface. Very often during the measurements, the software would cause
the program or even the computer to crash. The problem remained until the end of

38

this project unresolved.

For tuning, none of the here applied methods could change the difference significantly
between the timestamp of the hit and of the injection. Nonetheless, there are many
other possibilities that could not be tested in the scope of this thesis (like using the
two threshold mode and injection of moderated amplitudes while tuning the second
threshold). But the fact that the regular threshold did so little to modify the timing,
points towards the fact that the time delay comes not from time walk and it is not
dependent on the amplitude of the signal. The real cause of the time delay will have
to be found with other tests done in the future.

Another important conclusion from the attempts to tune is that the range offered to
modify the threshold individually is very limited. This is a feature that will have to
be improved in future prototypes of the MuPix series.

To conclude, the methods developed and the measurements conducted in the course
of this thesis revealed a lot of insight in the timing behaviour of the MuPix8. The
aim of the levelling the time delays of the pixel per pixel threshold turned out to
be unpromising when using injections. This motivates further investigations of this
effect using the described measurement techniques by using other signal sources like
radioactive sources or particle beams.

39

Bibliography

[1] “Festkörperphysik,” in Physik für Ingenieure, P. Dobrinski, G. Krakau,
and A. Vogel, Eds. Vieweg+Teubner, pp. 574–650. [Online]. Available:
https://doi.org/10.1007/978-3-8351-9076-4 8

[2] G. Lutz, Semiconductor radiation detectors: device physics, 1st ed. Springer
Berlin, OCLC: 255964092.

[3] I. Perić, “A novel monolithic pixelated particle detector implemented in
high-voltage CMOS technology,” vol. 582, no. 3, pp. 876–885. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168900207015914

[4] N. Berger, H. Augustin, S. Bachmann, M. Kiehn, I. Perić, A.-K. Perrevoort,
R. Philipp, A. Schöning, K. Stumpf, D. Wiedner, B. Windelband, and
M. Zimmermann, “A tracker for the mu3e experiment based on high-voltage
monolithic active pixel sensors,” vol. 732, pp. 61–65. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016890021300613X

[5] H. Augustin, N. Berger, S. Dittmeier, F. Ehrler, C. Grzesik, J. Hammerich,
A. Herkert, L. Huth, J. Kröger, F. M. Aeschbacher, I. Perić, M. Prathapan,
R. Schimassek, A. Schöning, I. Sorokin, A. Weber, D. Wiedner, H. Zhang, and
M. Zimmermann, “MuPix8 — large area monolithic HVCMOS pixel detector
for the mu3e experiment.” [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0168900218312488

[6] A.-K. Perrevoort, “Pixel and periphery and RO MuPix7.” [On-
line]. Available: https://www.physi.uni-heidelberg.de/Forschung/he/mu3e/wiki/
index.php/File:PixelandPeripheryandRO MuPix7.png

[7] A. Weber and I. Perić, Documentation MuPix8 (preliminary version 1).

[8] Dschwen, “Comparison of threshold triggering and constant fraction
triggering.” [Online]. Available: https://commons.wikimedia.org/wiki/File:
Constant fraction 1.svg

[9] H. Spieler, “Introduction to radiation detectors and electronics v.5. timing
measurements,” p. 9. [Online]. Available: http://www-physics.lbl.gov/∼spieler/
physics 198 notes/PDF/V-5-Timing.pdf

[10] M. Humphrys. Continuous output - the sigmoid function. [Online]. Available:
https://www.computing.dcu.ie/∼humphrys/Notes/Neural/sigmoid.html

40

https://doi.org/10.1007/978-3-8351-9076-4_8
http://www.sciencedirect.com/science/article/pii/S0168900207015914
http://www.sciencedirect.com/science/article/pii/S016890021300613X
http://www.sciencedirect.com/science/article/pii/S0168900218312488
http://www.sciencedirect.com/science/article/pii/S0168900218312488
https://www.physi.uni-heidelberg.de/Forschung/he/mu3e/wiki/index.php/File:PixelandPeripheryandRO_MuPix7.png
https://www.physi.uni-heidelberg.de/Forschung/he/mu3e/wiki/index.php/File:PixelandPeripheryandRO_MuPix7.png
https://commons.wikimedia.org/wiki/File:Constant_fraction_1.svg
https://commons.wikimedia.org/wiki/File:Constant_fraction_1.svg
http://www-physics.lbl.gov/~spieler/physics_198_notes/PDF/V-5-Timing.pdf
http://www-physics.lbl.gov/~spieler/physics_198_notes/PDF/V-5-Timing.pdf
https://www.computing.dcu.ie/~humphrys/Notes/Neural/sigmoid.html

A. Threshold scans

A.1. Figures of threshold scans with counts from the pixel at
(24,100)

This sections contains all figures with the measurements mentioned in section 3.4.1
using the single pixel count method.

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.1.: Threshold scan of the injection of 900 pixels

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.2.: Threshold scan of the injection of 9600 pixels

41

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.3.: Threshold scan of the injection of 100 pixels

600 650 700 750 800

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.4.: Threshold scan of the injection of 625 pixels

600 650 700 750 800

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.5.: Threshold scan of the injection of 25 pixels

42

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.6.: Threshold scan of the injection of 225 pixels

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.7.: Threshold scan of the injection of 400 pixels

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.8.: Threshold scan of the injection of 1225 pixels

43

A.2. Figures of the threshold scans with area counts
This section contains all figures with the measurements mentioned in section 3.4.1
using the area count method.

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.9.: Threshold scan of the injection of 900 pixels

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.10.: Threshold scan of the injection of 9600 pixels

44

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.11.: Threshold scan of the injection of 100 pixels

600 650 700 750 800

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.12.: Threshold scan of the injection of 625 pixels

600 650 700 750 800

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.13.: Threshold scan of the injection of 25 pixels

45

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.14.: Threshold scan of the injection of 225 pixels

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.15.: Threshold scan of the injection of 400 pixels

600 650 700 750 800 850

Threshold (mV)

0

100

200

300

400

500

C
ou

n
ts

Figure A.16.: Threshold scan of the injection of 1225 pixels

46

A.3. Time delay measurements

0 10 20 30 40

Column

0

R
ow

7570

7580

7590

7600

7610

7620

T
im

e
d

el
ay

(n
s)

Figure A.17.: Time delay values for all pixels on row 0

A.4. Figures of the threshold scans for different values of
TDAC1

These graphs correspond to the measurements discussed in section 3.6.1.

600 650 700 750 800 850

0

100

200

300

400

500

Fit

Measured points

Figure A.18.: Measurement and fit of a threshold scan with TDAC1=0

47

600 650 700 750 800 850

0

100

200

300

400

500

Fit

Measured points

Figure A.19.: Measurement and fit of a threshold scan with TDAC1=4

600 650 700 750 800 850

0

100

200

300

400

500

Fit

Measured points

Figure A.20.: Measurement and fit of a threshold scan with TDAC1=7

A.5. Figures of the time delay measurement for different
values of TDAC1

48

6500 6750 7000 7250 7500 7750 8000

tdelay (ns)

0

1000

2000

3000

4000

5000

6000

C
ou

n
ts

µ = (7526.364± 0.005)ns ; σ = (−3.244± 0.004)ns ; A = (50214.009± 13.595)

Figure A.21.: Time delay for TDAC1=0

6500 6750 7000 7250 7500 7750 8000

tdelay (ns)

0

1000

2000

3000

4000

5000

C
ou

n
ts

µ = (7543.717± 0.002)ns ; σ = (−4.075± 0.001)ns ; A = (51437.668± 15.025)

Figure A.22.: Time delay for TDAC1=4

6500 6750 7000 7250 7500 7750 8000

tdelay (ns)

0

1000

2000

3000

4000

5000

6000

C
ou

n
ts

µ = (7514.908± 0.005)ns ; σ = (−3.504± 0.007)ns ; A = (51127.137± 25.126)

Figure A.23.: Time delay for TDAC1=7

49

	Introduction
	Particle detectors
	Semiconductor detectors
	HV-MAPS
	MuPix8
	Readout
	Time walk corrections
	Injections
	Tuning

	File structure

	Experiment
	The experimental set-up
	Software

	First measurements
	Injecting several pixels
	Threshold scans
	Evaluating the threshold scans
	Alternative method

	The time delay
	Synchronising the timestamps
	Measurements of the time delay on a single pixel
	Measurements of the time delay on a small area of pixels
	Measurements of the time delay on a single row of pixels
	Measurement of the time delay on the whole matrix

	Tuning
	Determining the range of TDAC1
	Methods to change the time delay

	Conclusions and outlook
	Bibliography
	Appendix Threshold scans
	Figures of threshold scans with counts from the pixel at (24,100)
	Figures of the threshold scans with area counts
	Time delay measurements
	Figures of the threshold scans for different values of TDAC1
	Figures of the time delay measurement for different values of TDAC1

