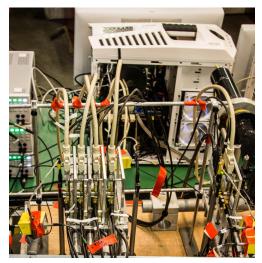
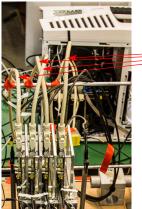
HV-MAPS Tracking Telescope: Fast Data Transfer with Direct Memory Access

> Dorothea vom Bruch for the Mu3e Collaboration

> > BTTB Workshop Feb 3, 2016

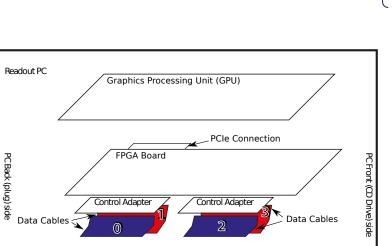


Introduction

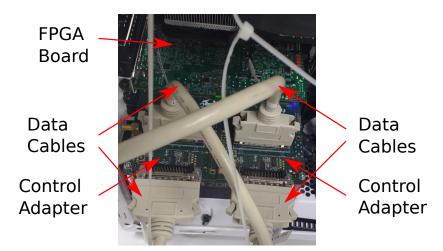


talk by Lennart Huth: HV-MAPS tracking telescope

Motivation



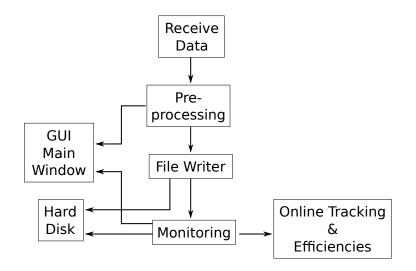
4 x 1.25 Gbit/s LVDS links


- Max. 30 Mhits / s / plane
- More data than we can write to disk
- Need GPU online reconstruction for selection

Readout Scheme

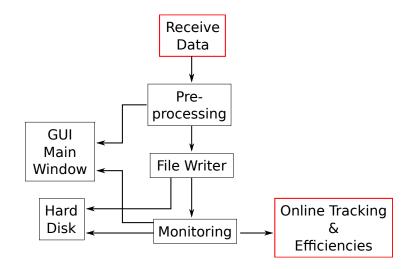
Readout Scheme

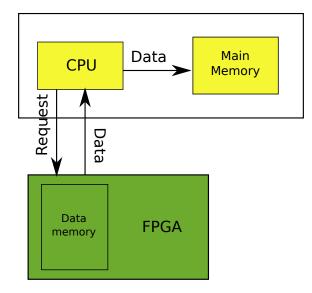
FPGA Board

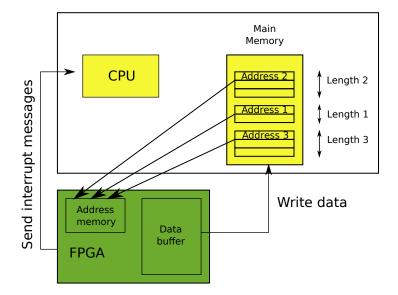


Commercially available from Altera

- Data stream from four planes
- Timestamps of 32 ns
- Hit sorter:
 - Sort according to timestamps
 - Up to 15 hits / timestamp
- Receive trigger signals
- Send off data:
 - Polling data initiated by CPU OR
 - Direct Memory Access (DMA) initiated by FPGA


Readout Software


Readout Software


Polling Data

Direct Memory Access (DMA)

Polling Data vs. Direct Memory Access

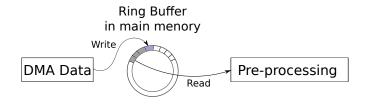
Polling Data	Direct Memory Access
Read request from computer	Write from FPGA to
Write from FPGA to main memory	main memory
Computer controls copying	FPGA controls copying
	CPU is informed about process
	via interrupt messages
Limited to \sim 30 MB/s	Theoretically limited by
	PCIe bandwidth $(4 \text{GB/s})^1$

¹8 lanes of PCIe 2.0

Feb 3, 2016

Telescope Readout with DMA

Dorothea vom Bruch


Rate Tests

- On FPGA: 256 kB memory buffer for data to be sent off
- Send in chunks of 4 kB
- Every 256 kB PC is notified via interrupt message where to read next
- For speed test: copy data to memory of graphics processing unit (GPU)
- Check for errors
- Not with telescope readout, only testing data transfer
- At 1.5 GB/s: Measured bit error rate $\leq 4 \times 10^{-16}$

DMA with Telescope

- Test with data generator on FPGA
- Produces hits from four planes
- Tested at 300 MB/s

- Tested at DESY in October 2015
- Run for two days continuously
- Errors occuring with probability of 10⁻⁴

Online Track Reconstruction on GPUs

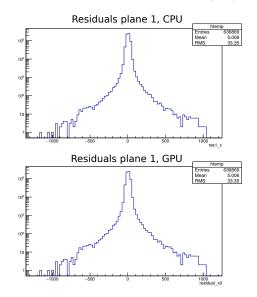
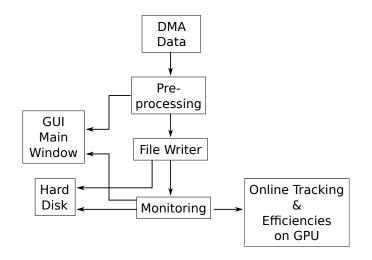
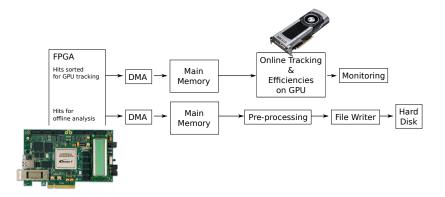


Image source: nvidia.com

- Sort hits according to planes
- Prepare memory for coalesced access on GPU
- Copy data to GPU memory
- Fit straight tracks
- Calculate efficiency
- Track rate of \sim 700 kHz


GPU Reconstruction: Results from Desy (10/2015)


DMA and GPU Reconstruction - Current Status

Combine DMA and GPU Reconstruction

Master thesis in progress by Carsten Grzesik

Summary

- Data transmission via DMA @ 1.5 GB/s
- Simulated telescope data @ 300 MB/s
- Tested telescope readout via DMA @ Desy
- Tested online track reconstruction on GPU @ Desy

Outlook

- Transfer sorted hits directly from FPGA to GPU memory via main memory
- Online track reconstruction and efficiency calculation independent from file writing for offline analysis
- Goal:
 - Telescope with large chips
 - Capable of high rates (\sim 20 Mhits / plane / s)
 - Fast online track reconstruction
 - Iterative alignment procedure
 - Online efficiency calculation

