Mu3e Testbeam Measurements at DESY

Moritz Kiehn for the Mu3e Collaboration

Physikalisches Institut, Universität Heidelberg

Telescopes and Testbeams, Hamburg, 30. June 2014

International Max planex Research School

The Mu3e Experiment

- Precision experiment
- Search for $\mu^+ \rightarrow {\rm e^+e^-e^+}$
- Sensitivity $< 1 \mbox{ in } 10^{16} \mbox{ decays}$
- Standard Model $\ll 1$ in 10^{50}

Importance ?

- New physics search
- High sensitivity

The Mu3e Experiment

Environment

- $>10^9~\mu^+$ Decays/s
- Electrons p < 53 MeV
- Dominated by multiple scattering

Pixel Sensor Requirements

- Fast < 20 ns
- Thin $\leq 1 \% X_0$
- Pixel $80\times80\,\mu m^2$

Ultra-Lightweight Mechanics

- 50 µm Silicon sensor
- 50 μm Kapton flexprint
- $25\,\mu m$ Kapton support frame
- $ightarrow \leq 1 \,$ % Radiation length

Testing Pixel Sensor Prototypes

Monolithic Active Pixel Sensors

- HV $\sim 70\,V$ (HV-MAPS)
- Fast charge collection by drift
- Thin active zone $<20\,\mu\text{m}$
- Cheap, commercial process

MuPix4 HV-MAPS Prototype

I. Peric, P. Fischer et al. NIMA 582(2007)876

- 92 \times 80 μm^2 pixel size
- Global threshold
- Zero-suppressed digital readout
- Timestamps
- 93% active area

Testbeam Setup w/ MuPix4

- Full EUDAQ (v1.1) integration
- Reconstruction w/ EUTelescope (v00-09-xx)

Provided by DESY

- Beamline T22
- 1 GeV to 6 GeV electrons
- Aconite beam telescope

Telescope (Mis-)Alignment

11

Track Residuals in X / All Planes

- GBL / Millepede Alignment
- Systematic Shift
- Complimentary
 before / after DUT
- Not visible in alignment runs

Telescope (Mis-)Alignment

Track Residuals / Plane 2

- GBL / Millepede Alignment
- Systematic Shift
- Complimentary
 before / after DUT
- Not visible in alignment runs

Single Hit Resolution

12

Global Efficiency / High Voltage

Global Efficiency / Incidence Angle

14

Pixel Efficiency

Multiple Scattering in Thin Silicon

Testbeam Setup w/ Silicon Wafer

N. Berger, M. Kiehn, et.al. arXiv:1405.2759 (accepted by JINST)

Measured Scattering Distributions

$$egin{aligned} t(heta) &= f_{upstream} \otimes f_{downstream} \ s(heta) &= f_{upstream} \otimes f_{Si} \otimes f_{downstream} \ &= (f_{upstream} \otimes f_{downstream}) \otimes f_S \end{aligned}$$

Testbeam Setup w/ Silicon Wafer

N. Berger, M. Kiehn, et.al. arXiv:1405.2759 (accepted by JINST)

Fitted Scattering Distributions

$$\begin{split} t(\theta) &\sim \textit{normal}(\mu, \sigma_1) + \epsilon \cdot \textit{studentt}(\mu, \sigma_2, \nu_2) \\ s(\theta) &\sim t_{\textit{fixed}} \otimes \textit{studentt}(\mu, \sigma, \nu) \end{split}$$

18

Measured Scattering Distributions

50 μ m Si, $\alpha = 15^{\circ}$

Distribution Parameters

- RMS₉₈ is consistent w/ PDG $\sim 1/p\sqrt{t}(1+0.038\ln t)$
- Tail fraction $\sim 1/\nu$

GEANT4 Validation

- GEANT4 simulation of Telescope Setup
- RMS_{98} is well described (not shown)
- Default models underestimate tails
- Shape is not described

Summary & Outlook

Mu3e

- Search for $\mu^+ \to {\rm e^+e^-e^+}$
- R&D in progress

Testbeams at DESY

- MuPix HV-MAPS prototype
- Scattering in thin silicon
- Scintillating tiles / fibres

• . . .

Impossible w/o DESY Testbeam Group. Thank You.

Outlook

- MuPix6 prototype
- Next Testbeam in Oct./Nov. ?

Summary & Outlook

Mu3e

- Search for $\mu^+ \rightarrow {\rm e^+e^-e^+}$
- R&D in progress

Testbeams at DESY

- MuPix HV-MAPS prototype
- Scattering in thin silicon
- Scintillating tiles / fibres

Impossible w/o DESY Testbeam Group. Thank You.

Outlook

- MuPix6 prototype
- Next Testbeam in Oct./Nov. ?

Summary & Outlook

Mu3e

- Search for $\mu^+ \to {\rm e^+e^-e^+}$
- R&D in progress

Testbeams at DESY

- MuPix HV-MAPS prototype
- Scattering in thin silicon
- Scintillating tiles / fibres

Impossible w/o DESY Testbeam Group. Thank You.

Outlook

- MuPix6 prototype
- Next Testbeam in Oct./Nov. ?

Backup

t-Distribution Scattering Model

N. Berger, M. Kiehn, et.al. arXiv:1405.2759

Idea

- Based on Urban model
- Angles from t-distribution
- ν from fit to data

$$\nu(p,t) = A + B\frac{1}{p-D} + Cd$$

Caveats

- Purely empirical
- Valid only for 1 GeV to 6 GeV electrons 50 μm to 141 μm Si

https://en.wikipedia.org/wiki/Student-t

Silicon Pixel Sensors

A2

Hybrid

• HV $\sim 700\,V$

- Sensor thickness $\sim 250\,\mu m$
- Extra material
- Complex and expensive

Monolithic Active Pixel Sensor

- HV $\sim 70\,V$ (HV-MAPS)
- Thin active zone $<20\,\mu\text{m}$
- Cheap, commercial process

Hitmap a.k.a Hybrid Strixel Sensor

0° incidence angle 70 V high voltage 838 mV threshold 5 GeV beam energy

A3

Subpixel Efficiency / 4x4 Submatrix

Α4

Pixel Tuning

Before Tuning

After Tuning

Clustering / Charge Sharing

0° incidence angle 70 V high voltage 823 mV threshold 5 GeV beam energy

1-pixel cluster dominate

2-Pixel Cluster

Timing

Mu3e Collaboration

- Paul-Scherrer Institute, Switzerland
- ETH Zürich
- University Zürich
- University Geneva
- Heidelberg University
- ZITI Mannheim

Multiple Scattering

$$heta_{MS} = rac{13.6\,\mathrm{MeV}}{p} \sqrt{x/X_0}$$

Example

- *p* = 35 MeV
- 200 µm Si
- $\Omega R = 5 \,\mathrm{cm}$
- $\Delta y \approx 1 \,\mathrm{mm}$