The Mu3e Experiment Introduction and Current Status

Moritz Kiehn for the Mu3e Collaboration

Physikalisches Institut, Universität Heidelberg

NuFACT2014, Glasgow, 25. August 2014

The Mu3e Experiment

- Precision experiment
- Search for $\mu^+ \rightarrow {\rm e^+e^-e^+}$
- Sensitivity $< 1 \mbox{ in } 10^{16} \mbox{ decays}$

In this talk

- Experimental Concept
- Current Status
- Pixel Sensor Prototypes

$\mu \rightarrow {\rm eee}$ in the Standard Model

Features

- Charged lepton flavor violating
- Via neutrino mixing
- Expected BR($\mu
 ightarrow$ eee) $\ll 10^{-50}$
- Current Limit from Sindrum ${\rm BR}(\mu \to {\rm eee}) < 1 \cdot 10^{-12}$ @90 % CL

Nucl.Phys. B299(1)

Importance

- Observable rate only from New Physics
- Sensitive New Physics Search

Muon Beamlines at PSI

Paul Scherrer Institute

- Villigen, Switzerland
- Currently hosts the
 MEG Experiment

Muon Beamlines

- Low energy DC beams
- Current beam lines: $\approx 1 \cdot 10^8 \, \mu/s \; (\pi E5)$
- Future high intensity beam: $> 1 \cdot 10^9 \,\mu/{
 m s}$

2x10⁹ μ/s 50 ns integration

Signal and Backgrounds

Signal

- Common vertex
- $\sum \vec{p_i} = 0$
- *p* < 53 MeV

Backgrounds Internal Conversion

e+ v1 e+ e

- Common vertex
- $\sum \vec{p_i} \neq 0$
- In-time

Combinatorial

- No common vertex
- Out-of-time

Requires $\sigma_p < 0.5 \, {\rm MeV}$ $\sigma_t < 1 \, {\rm ns}$

Multiple Scattering

 $\theta_{MS} \sim \frac{1}{p} \sqrt{x/X_0}$

Example

- *p* = 35 MeV
- 200 µm Si
- $\Omega R = 5 \,\mathrm{cm}$
- $\Delta y \approx 1 \,\mathrm{mm}$
- \rightarrow Low material budget

Environment

 ${\scriptstyle \bullet}~>10^9~\mu^+$ Decays/s

 μ Beam

Target

- Electrons $p<53\,\text{MeV}$
- Multiple scattering dominates

Environment

- ${\scriptstyle \bullet}~>10^9~\mu^+$ Decays/s
- Electrons $p < 53\,\text{MeV}$
- Multiple scattering dominates

Environment

- ${\scriptstyle \bullet}~>10^9~\mu^+$ Decays/s
- Electrons $p < 53\,\text{MeV}$
- Multiple scattering dominates

Environment

- ${\:\bullet\:}>10^9~\mu^+$ Decays/s
- Electrons $p<53\,\text{MeV}$
- Multiple scattering dominates

Full Detector

$\begin{array}{l} \mbox{Magnetic field} \sim 1\,\mbox{T}\\ \mbox{Continuous readout} \end{array}$

Tracker Requirements

- Fast serial readout $\sim 20\,\text{MHz}$
- Thin $< 1 \% X_0$
- $80\,\mu m \times 80\,\mu m$ pixel
- + $1\,\text{cm} \times 2\,\text{cm}$ sensor area

Timing

• Resolution $< 1 \, \text{ns}$

Ultra-Lightweight Mechanics

- 50 µm Silicon sensor
- $25\,\mu m$ Kapton flexprint
- $25\,\mu m$ Kapton support frame
- $ightarrow \sim 1\,$ ‰ Radiation length

Scintillating Fibres

Fibre and SiPM Array

Signal Spectrum

- 3-5 layers of fibres
- Readout with SiPM and custom ASIC (StiC)
- Time resolution $\sim 1 \text{ ns} (^{22}\text{Na-source})$

Scintillating Tiles

Tile Station

Tile Prototype

Time Resolution

- $\sim 0.5\,\text{cm}^3$ per tile
- Readout with SiPM and custom ASIC (StiC)
- Time resolution $\sim 80 \, \mathrm{ps}$ (testbeam)

Monolithic Active Pixel Sensors

I. Peric, P. Fischer et al. NIMA 582(2007)876

- HV \sim 70 V (HV-MAPS)
- Fast charge collection by drift
- Thin active zone $< 20 \, \mu m$
- Cheap, commercial process

HV-MAPS Prototypes

Design Specifications

- + 80 μm \times 80 μm pixel size
- + $1\,\text{cm} \times 2\,\text{cm}$ active area

MuPix2

- 39 $\mu m \times$ 30 μm pixel size
- $1.8\,\text{mm}\times1\,\text{mm}$ active area
- Proof of Concept

MuPix3/4

- $92\,\mu m \times 80\,\mu m$ pixel size
- $2.9 \text{ mm} \times 3.2 \text{ mm}$ active area

MuPix4 HV-MAPS Prototype

- 92 $\mu m \times$ 80 μm pixel size
- Global threshold
- Zero-suppressed digital readout
- Timestamps
- Additional readout FPGA

Single Hit Resolution

19

Global Efficiency

Pixel Efficiency

Subpixel Efficiency / 4x4 Pixels

Timing

Future MuPix Prototypes

0000

MuPix6

- Currently in the lab
- Updated analog part, e.g.2-stage amplifier
- Same geometry

MuPix7

- Just submitted
- Fast serial readout
- Full digital logic
- Still small scale prototype

Cooling with Helium

Why Helium?

- Low density, low scattering
- High mobility

Temperature Gradient

Reconstruction

Reconstruction Efficiency

- > 90 % efficiency for 4-hit tracks
- Dropoff is detector acceptance

Momentum Resolution

3-hit track, $\sigma pprox 1.5 \, {
m MeV}$

6-hit track, $\sigma pprox$ 0.2 MeV

- Full GEANT4 simulation
- Custom reconstruction
- No energy loss correction

Expected Sensitivity

Phase IA: earliest 2016

- $2 \cdot 10^7 \,\mu/s$
- Central pixel layers

Expected Sensitivity

Phase IA: earliest 2016

- $2 \cdot 10^7 \,\mu/s$
- Central pixel layers

Phase IB: 2017+

- $1\cdot 10^8\,\mu/{
 m s}$
- + Timing
- + 1st recurl stations

Phase II: 2019+

- $2\cdot 10^9\,\mu/
 m s$
- Full detector
 - Future Muon Beamline

Expected Sensitivity

Phase IA: earliest 2016

- $2 \cdot 10^7 \,\mu/s$
- Central pixel layers

Phase IB: 2017+

- $1\cdot 10^8\,\mu/{
 m s}$
- + Timing
- + 1^{st} recurl stations

Phase II: 2019+

- $2 \cdot 10^9 \, \mu/s$
- Full detector
- Future Muon Beamline

The Mu3e Collaboration

UNIVERSITÉ DE GENÈVE Paul Scherrer Institute

University Geneva

ETHzürich

Universität Zürich^{uss}

ETH Zürich

University Zürich

Heidelberg University

Karlsruhe Institute of Technology

Mainz University

Summary and Outlook

29

Mu3e

- Search for $\mu^+ \to {\rm e^+e^-e^+}$
- Sensitivity $< 1 \mbox{ in } 10^{16} \mbox{ decays}$

Features

- HV-MAPS silicon sensors
- Ultra-thin detector
- Down to 100 ps timing
- Up to $2\cdot 10^9\,\mu/s$

In the Future

- First data in 2016+
- Full rate not before 2019

http://www.psi.ch/mu3e

Backup

Silicon Pixel Sensors

Α1

Hybrid

- HV $\sim 700\,V$
- Sensor thickness $\sim 250\,\mu m$
- Extra material
- Complex and expensive

Monolithic Active Pixel Sensor

- HV \sim 70 V (HV-MAPS)
- Thin active zone $<20\,\mu\text{m}$
- Cheap, commercial process

Beyond the Standard Model

• e.g. SUSY

• e.g new heavy boson

A2

Global Efficiency / High Voltage

А3