HV-MAPS Tracking Telescope
For High Rates and Low Momentum Particles

Lennart Huth
on Behalf of the Mu3e Collaboration

DESY Telescope Workshop

30.06.2014 - 02.07.2014
Outline

1. Motivation
2. Sensors
3. Mechanics
4. Electronics
5. Software
6. Test Beams
7. Conclusion
The MuPix Telescope

Idea: Build a tracking telescope out of Mu3e parts:
Comparison

Table 1: Comparison of existing beam telescopes and the proposed project.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>55 μm</td>
<td>18.4 μm</td>
<td>80 μm</td>
</tr>
<tr>
<td>Pointing resolution</td>
<td>2 μm</td>
<td>1.8 μm</td>
<td>≈ 12 μm</td>
</tr>
<tr>
<td>(180 GeV π) 50 MeV e⁻</td>
<td>400 μm</td>
<td>180 μm</td>
<td>150 μm</td>
</tr>
<tr>
<td>Pointing resolution</td>
<td>2 μm</td>
<td>1.8 μm</td>
<td>≈ 12 μm</td>
</tr>
<tr>
<td>(50 MeV e⁻)</td>
<td>400 μm</td>
<td>180 μm</td>
<td>150 μm</td>
</tr>
<tr>
<td>Material in radiation</td>
<td>300 μm sensor</td>
<td>50 μm sensor</td>
<td>50 μm sensor</td>
</tr>
<tr>
<td>lengths</td>
<td>700 μm readout</td>
<td>50 μm protective foil</td>
<td>25 μm Kapton foil</td>
</tr>
<tr>
<td>Time resolution</td>
<td>1 ns (in special plane)</td>
<td>115.2 μs</td>
<td>17 ns</td>
</tr>
<tr>
<td></td>
<td>16 ms otherwise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame rate</td>
<td>60 Hz</td>
<td>9 KHz</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Maximum track rate</td>
<td>15.5 KHz</td>
<td>≈ 100 KHz</td>
<td>≈ 20 MHz</td>
</tr>
<tr>
<td>Track reconstruction</td>
<td>mostly offline</td>
<td>offline</td>
<td>online</td>
</tr>
</tbody>
</table>

(1) Assuming 1 cm flight distance and dominating multiple scattering effects.

Test beams

<table>
<thead>
<tr>
<th>Test beams</th>
<th>T4-H8A @ CERN</th>
<th>T22 @ DESY</th>
<th>πM1 @ PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [GeV]</td>
<td>180</td>
<td>1-6</td>
<td>≈0.25</td>
</tr>
<tr>
<td>Particles</td>
<td>π⁺</td>
<td>e⁻</td>
<td>e, π, μ</td>
</tr>
<tr>
<td>Rate</td>
<td>1 kHz</td>
<td>>GHz</td>
<td></td>
</tr>
</tbody>
</table>
New Physics and Mu3e

Search for LFV decay: $\mu^+ \rightarrow e^+ e^+ e^-$ with sensitivity of 1 in 10^{16}

Signal Decay
- $10^9 \, \mu/s$
- precise timing
- $E_{max} = 53$ MeV

Random Combinations
- high momentum resolution
- high vertex resolution
- high time resolution

→ Use new detector technologies for high rates, good vertex and momentum resolution
→ Low momentum particles → avoid multiple scattering
Concept: Stop muons at target and measure decay particles

\[\rightarrow E_{\text{max}} = 53 \text{ MeV} \]

1 m² pixel detector
High Voltage - Monolithic Active Pixel Sensors (HV-MAPS)

(I. Peric, P. Fischer et al., NIM A 582 (2007) 876)

- Zero suppressed
- 8 bit Time stamp
- $80 \times 80 \, \mu m^2$
- Time resolution < 17 ns
- Efficiency $> 99\%$
- 50 μm thin

more details: M. Kiehn 17:05 today
MuPix Prototypes

<table>
<thead>
<tr>
<th>Prototype</th>
<th>Active Area</th>
<th>Functionality</th>
<th>Bugs</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>MuPix1</td>
<td>1.77 mm²</td>
<td>Sensor + analog</td>
<td>Comparator “ringing”</td>
<td>First MuPix prototype</td>
</tr>
<tr>
<td>MuPix2</td>
<td>1.77 mm²</td>
<td>Sensor + analog</td>
<td>Temperature dependence</td>
<td>No ringing</td>
</tr>
<tr>
<td>MuPix3</td>
<td>9.42 mm²</td>
<td>Sensor, analog, dig.</td>
<td>bad pixel on/off,</td>
<td>First part of dig. readout</td>
</tr>
<tr>
<td>MuPix4</td>
<td>9.42 mm²</td>
<td>Sensor, analog, dig.</td>
<td>Zero timestamp and row address for 50% of pixels</td>
<td>First working digital readout, first timestamp, temperature stable</td>
</tr>
<tr>
<td>MuPix6</td>
<td>10.55 mm²</td>
<td>Sensor, analog, dig.</td>
<td>?</td>
<td>Removed zero time-stamp and address bug</td>
</tr>
</tbody>
</table>
Sensor Development

On Carrier
- 2.2 mm ceramic
- 1.7 mm PCB board
- 250 µm chip
- \(x/X_0 = 23\% \)

On Board
- No ceramic
- 100 µm PCB board
- 250 µm chip
- \(x/X_0 = 2.5\% \)

On Kapton
- No ceramic + PCB
- 25 µm Kapton
- 250 µm chip
- \(x/X_0 = 2.1\% \)

Final Goal: 50 µm Si + 25 µm Kapton \(\rightarrow X_0 = 0.6\% \)
Mechanical Structure

- Mounted on optical rail
- Layers move independently
- Compact system
- Most components: Thorlabs
Signal Transmission

Plain ribbon cable

AL shielded ribbon cable
Readout Chain
Readout Chain

1

2

8x40 wire ribbon cables

3

4
Readout Chain

1 TOP
2 BOT
2 FPGAs
Readout Chain
Concept

- Telescope is operating in streaming mode at high particle rates
 → Continuous data readout, no trigger and a lot of data
 → Need a lot computing power
 → Share the work
- Several Threads
 → Readout, monitoring, time sorting, storing, tracking → Synchronization, coordination, communication
- Data handling via lock-free spsc fifo queues
- Reconstruct the tracks online
Readout Software

- Top Trigger Queue
- Top Hit Queue
- Bottom Trigger Queue
- Bottom Hit Queue

- RO TOP
- RO BOTTOM

Readout threads
Copy data from FPGA
Fill hit and trigger queues
Readout Software

Data sorting
Frame creation
data storing
Readout Software

Motivation

Sensors

Mechanics

Electronics

Software

Test beam

Conclusion

Readout Software

- **RO TOP**
 - Top Hit Queue
 - Dataprocess. Top
 - FileWriter
 - HDD
 - Data Frames
 - Root Trees
 - Monitoring

- **RO BOTTOM**
 - Bottom Hit Q.
 - Bottom Trigger Queue
 - Dataprocess. Bottom
 - FileWriter
 - HDD
 - Data Frames
 - Root Trees
 - Monitoring
Readout Software

Motivation

- Sensors
- Mechanics
- Electronics

Software

- Test beam
- Conclusion

RO

- TOP
 - Top Hit Queue
 - Top Trigger Queue
 - Control
 - Data Frames
 - HDD
 - DataFrames
 - Root Trees

- Bottom
 - Bottom Hit Queue
 - Bottom Trigger Queue

FileWriter

- Not Implemented!!

MainWindow

- Tracking

Dataprocess.

- Top
- Bottom

Monitoring
Performance

Data Taking

- 2.5 days data taking w/o crash at 5 GeV electron energy
- highest rate with noise: 755 k hits/s per plane

Online Monitoring
Correlations & Alignment & Resolution

MuPix 4: Pixel size 92x80 μm^2

Intrinsic resolution $= 0.28$ Pixel < 0.79 Pixel $= \text{distribution width}$
PCB Holder - Development
Lessons Learned

- First HV-MAPS telescope in operation
- Chip DAC settings must be improved
- Software is stable and working
- Improve mechanics
- Data format can be improved
- Ribbon cables introduce a lot of digital crosstalk
PSI test beam June 14
PSI Test Beam

Goals

- Test new Software and LVDS links
- Take high statistics to test track reconstruction
- Test time stamp influence
- Use the new sensor prototype MuPix 6

PSI accelerator cavity

- No beam due to accelerator maintenance complications
- Only source tests performed
Timing with 3.7 MBq ^{90}Sr-source

MuPix 6 prototype
Summary

- First HV-MAPS telescope tested successfully
- Track reconstruction under test
- High rates (≈ 1 MHz) can be handled
- New MuPix sensor is under test
- Time stamps are working and system is synchronized
Outlook

- Next Testbeam: July @ PSI
- Online track reconstruction
- Thin sensors
- Final chip \mathcal{O} (cm2)
- Increase time resolution up 5 ns

- Thanks to the DESY testbeam group
- Looking forward to autumn beam
Thank you!