An Introduction to the Mu3e Experiment

Moritz Kiehn

Institute of Physics Heidelberg University, Germany

International School of Subnuclear Physics, Erice 2013

Introduction

The Mu3e Experiment

- Precision experiment
- Search for $\mu^+ \rightarrow {\rm e^+e^-e^+}$
- Charged Lepton Flavor Violation (cLFV)
- New Physics search (Indirect)

In this Talk

- Theoretical motivation
- Experimental design
- Current status

2/16

Flavor in the Standard Model

adapted from [Wikipedia]

Original Formulation

- Quark transitions via Weak Interaction
- Lepton flavor conserved

Neutrino Mixing

- LFV in neutral sector
- Charged sector?

$\mu ightarrow$ eee in the Standard Model

Features

- Charged lepton flavor violating
- Via neutrino mixing
- Suppressed by $\sim \left(rac{\Delta m_{
 u}^2}{m_W^2}
 ight)^2$
- Expected BR($\mu \rightarrow$ eee) < 10⁻⁵⁰

Importance

 Observable BR only from New Physics

Beyond the Standard Model

In Loops

5/16

- e.g. SUSY
- Also enhances $\mu \to {\rm e}\gamma$

- e.g new heavy boson
- No $\mu \rightarrow e\gamma$ enhancement

Current Limits

 $\mu^- + Au \rightarrow e^- + Au < 7 \times 10^{-13}$

cLFV Process	BR @ 90%CL	Experiment
$\mu^+ \rightarrow {\rm e^+e^-e^+}$	$< 1 imes 10^{-12}$	Sindrum [Nucl.Phys. B299(1)]
$\mu^+ \rightarrow e^+ \gamma$	$< 5.7 imes 10^{-13}$	MEG [arXiv:1303.0754]

Sindrum II [Eur. Phys. J. C47 337-346]

Our Goal: BR($\mu^+ \rightarrow e^+e^-e^+$) < 1 × 10⁻¹⁶ @ 90% CL

Experimental Idea

- 3. Measure decay electrons
- 4. Find three coincident electrons

7/

Muon beams at PSI

Paul-Scherrer Institute

- Villigen, Switzerland
- Currently hosts the MEG Experiment

Muon Beam Lines

- Low energy DC Beams
- Current beam lines: $\approx 1 \times 10^8$ muons /s
- Future high intensity beam: $> 1 \times 10^9$ muons /s

\rightarrow High Rates

Signals and Backgrounds

Signal

- $(\sum P_i)^2 = m_\mu^2$
- $\sum \vec{p}_i = 0$
- $p_{max} \approx 53 \,\mathrm{MeV}$

Backgrounds Internal Conversion

Combinatorial

\rightarrow Fast, precise electron tracker + timing

Multiple Scattering

 $\Omega R = 5 \,\mathrm{cm} \rightarrow \Delta y \approx 1 \,\mathrm{mm}$

\rightarrow Minimize material, optimize geometry

High Voltage MAPS

Monolithic Active Pixel Sensor

 $11/_{16}$

[I. Peric et al., NIM A, 2013]

- High voltage \sim 60 V
- Fast (drift time $\sim 1 \, \text{ns}$)
- Can be thinned $< 50\,\mu m$
- Integrated Readout
- Integrated Zero-Suppression
- \rightarrow no extra readout chip

Ultra-Lightweight Mechanics

 $12/_{16}$

- 50 µm Silicon
- 25 µm Kapton Flexprint
- $50\,\mu m$ Kapton support frame
- $\rightarrow\,<1\,\text{\ensuremath{\sc w}}$ Radiation length

 $13/_{16}$

- Magnetic field $\sim 1\,{\rm T}$
- Fibres $\sigma_t \sim 1 \, {
 m ns}$
- Tiles $\sigma_t < 250 \, \mathrm{ps}$

 $13/_{16}$

- Magnetic field $\sim 1\,\text{T}$
- Fibres $\sigma_t \sim 1 \, {
 m ns}$
- Tiles $\sigma_t < 250 \, \mathrm{ps}$

 $13/_{16}$

 $13/_{16}$

Simulated Sensitivity

Resolution

Sensitivity

- Full detector simulation
- Combinatorics reduced by timing / vertex cuts
- Sensitivity down to ${\sf BR} < 1 \times 10^{-16}$

Status

- Research Proposal [arXiv:1301.6113] (accepted in January 2013)
- Pixel Sensor Prototypes
- Mechanical Prototypes
- Testbeam Measurements

• . . .

132 A
 Research Proposal for an Experiment to
Search for the Decay $\mu \rightarrow eee$
Jai
A. Blondel, A. Brower, M. Pohl Delperformant & physique mathibits et corpuscisitor, Universitie & Graine, Graine
S. Bachmann, N. Berger, M. Kishn, A. Schötzing, D. Wiedner, B. Windelband Physichliches Isstitut, Universität Heidelberg, Heidelberg
P. Edstert, HC. Schultz-Coulon, W. Shon Kirchoff Isatilist für Physik, Universität Heideberg, Heideberg
P. Fischer, I. Porit Zentralizativat für Informatik, Universität Heidelberg, Manukeim
M. Hildebrandt, PR. Kettle, A. Papa, S. Ritt, A. Stoylov Paul Scherner Isatilut, Villigen
G. Desertori, C. Grab, R. Wallaw
Eldgenössiche Technische Hochschule Zürich, Zürich
R. Gredig, P. Rohmann, U. Stramman Universität Zärich, Zärich
December 10 th 2012

Status

15/16

- Research Proposal [arXiv:1301.6113] (accepted in January 2013)
- Pixel Sensor Prototypes
- Mechanical Prototypes
- Testbeam Measurements

Status

15/16

- Research Proposal [arXiv:1301.6113] (accepted in January 2013)
- Pixel Sensor Prototypes
- Mechanical Prototypes
- Testbeam Measurements

• . . .

Summary & Outlook

16/16

Summary

- Search for $\mu^+ \rightarrow {\rm e^+e^-e^+}$
- Fast and precise elecron tracker
- additional timing
- ultimate sensitivity ${\sf BR}(\mu^+ \to {\rm e^+e^-e^+}) < 1 \times 10^{-16}$

Timeline

Collaboration

- Paul-Scherrer Institute
- ETH Zürich
- University Zürich
- University Geneva
- Heidelberg University
- ZITI Mannheim

Backup

Effective Lagrangian Example

10⁴ γ-penguin mass scale A (TeV) 10-16 ۷/Z 10-15 103 2.4 ×10⁻¹² μ - > eγ (MEG) χ° (Sindrum) 10³ 10^{2} 102 10
$$\begin{split} \mathcal{L}_{LFV} = & \left[\frac{m_{\mu}}{(\kappa+1)\Lambda^2} \ \overline{\mu_R} \sigma^{\mu\nu} \mathbf{e}_L F_{\mu\nu} \right]_{\gamma-\text{penguin}} \\ & + \left[\frac{\kappa}{(\kappa+1)\Lambda^2} \ (\overline{\mu_L} \gamma^{\mu} \mathbf{e}_L) (\overline{\mathbf{e}_L} \gamma_{\mu} \mathbf{e}_L) \right]_{t} \end{split}$$
tree

 $16/_{16}$

adapted from [A. de Gouvea, Nucl. Phys B. (Proc. Suppl.), 188 303-308] and [arXiv:hep-ph/9909265] Moritz Kiehn, Heidelberg University — An Introduction to the Mu3e Experiment — ISSP 2013

Example Frame at High Intensity $16/_{16}$

$\begin{array}{l} \mbox{High Intensity: } 2\times 10^9 \mbox{ muons / s} \\ \rightarrow 100 \mbox{ tracks / 50 ns readout frame (before / after timing cuts)} \end{array}$

Expected Sensitivity over Time

 $16/_{16}$