

Track reconstruction for the Mu3e experiment

Alexandr Kozlinskiy, Niklaus Berger André Schöning and Moritz Khien on behalf of the Mu3e collaboration

2015.03.09 (DPG, Wuppertal)

Mu3e experiment

Mu3e experiment:

- Search for $\mu^{\scriptscriptstyle +} \to e^{\scriptscriptstyle +} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}$
- Current experimental status:
 - SINDRUM <u>Nucl.Phys.B299(1988)1</u>
 - Br($\mu^+ \rightarrow e^+ e^-$) < 10⁻¹² at 90% c.l.
- Mu3e goal: Br $< 10^{-15}$

Requirements:

- $10^8 \,\mu^+/s$ on target
- Good momentum resolution: < 0.5 MeV
- Good vertex resolution: 300 μm
- Timing measurement
- Fast readout

Mu3e detector

Detector:

- Muons stop on target and decay at rest:
 - Maximum e[±] energy: 53 MeV
- Target: hollow double cone
- Central pixel detector (4 layers) + 2 recurl stations:
 - HV-MAPS (80µm pixel size, 50µm thin $\approx 10^{-3} X_0$)
- Readout at 20 MHz (50 ns frame size)

Timing:

- Fibre detector ≈ 1 ns
- Tile detector $\approx 100 \text{ ps}$

Triplet fit

Triplet:

- Basic block
- 3 hits (3D points) form triplet
- Multiple scattering at middle hit
- No energy loss, no hit position uncertainty (MS dominates)

Triplet fit solution:

• Minimize scattering angle (χ^2)

$$\frac{\varphi_{MS}^2(R_{3D})}{\sigma_{MS}^2} + \frac{\theta_{MS}^2(R_{3D})}{\sigma_{MS}^2}$$

- Solve by linearizing around circle solution
- Easy to calculate and fast

Track reconstruction

MC simulation:

- Geant4 simulation of full detector geometry & readout
- 100% pixel efficiency & no noise
- Beam: 10⁸ muon decays on target
 - Decay $\mu \rightarrow \text{evv}$ (Michel decay)
 - 5 decays in 50 ns frame

le-Im

Reconstruction: triplets

Transverse (XY) view

Side (ZY) view

Make triplets:

- Combination of hits in first 3 layers (hits 0, 1 and 2)
 - n³ combinations (n number of hits in a layer)
- Geometrical selections + χ^2 cut
- Fake rate ~ 2 (fake combinations per one MC track)

Reconstruction: short tracks

Short 4-hit tracks:

- Use triplets as seeds:
 - approximate position of hit 3
- 2 triplets form short track
- Weighed average of individual triplets:

$$r = \frac{\sum r_i / \sigma_i^2}{\sum 1 / \sigma_i^2}$$

Short tracks: efficiency and resolution

M3eD

- 95% efficiency for short tracks with at least one hit in each layer (~80% acceptance).
- Efficiency limited by geometrical and χ^2 cut
- Fake rate ~ 0.02
- Momentum resolution: 1.4 MeV/c

Note: no correction for energy loss

Reconstruction: long tracks

Long 6,8-hit tracks:

- Long tracks made from combination of 2 short tracks or short track and a pair of hits.
- Strong constraint (pixel size) on 3D radius
 - $\sigma_p \approx 0.2 \text{ MeV/c}$

Long tracks: efficiency and resolution

M3eD

- 10% of short tracks promoted to 8-hit tracks
 - fake rate ~ 0.5 (wrong combination of short tracks)
- 65% of short tracks promoted to 6-hit tracks
 - fake rate ~ 0.01
- Momentum resolution: **0.2** MeV/c

Summary

Mu3e experiment:

- Search for $\mu^+ \rightarrow e^+e^-$, Br $< 10^{-15}$
- Require high precision & efficiency
- Large data rates (fast online reconstruction)

Reconstruction:

- Use triplet fit for track reconstruction
- Good performance (resolution and efficiency):
 - short 4-hit tracks: $\sigma_p \approx 1.4 \text{ MeV/c}$
 - long 6,8-hit tracks: $\sigma_p \approx 0.2 \text{ MeV/c}$

Work is ongoing:

- Energy loss correction
- Effect of pixel size
- Alignment
- Fibre and tile matching (timing information)
- Optimization for high rates (10⁹)

