Spurrekonstruktion bei dominierender Vielfachstreuung

Moritz Kiehn, Niklaus Berger, Alexandr Kozlinskiy und André Schöning für die Mu3e Kollaboration

Physikalisches Institut, Universität Heidelberg

DPG Frühjahrstagung Wuppertal, 2015-03-09

International Max planex Research school

Vielfachstreuung

Streuwinkel

$$\sigma_{MS} \sim rac{1}{p} \sqrt{x/X_0}$$

Streuung vs. Ortsauflösung

 $f = \frac{s \cdot \sigma_{Ort}}{\sigma_{MS}}$

Beispiel: Mu3e Experiment

- p = 35 MeV/c
- $x/X_0 = 1 \,\%$ (50 μm Si)
- s = 1 cm
- $\sigma_{Ort} = 23 \, \mu m$

 $\rightarrow~f\approx 3.3$

Spurmodelle und Rekonstruktion

- Helixfit
- Direkte Berechnung
- Kalman Filter
- GeneralBrokenLines
- Iterativ bzw.
 Gleichungssystem

- Neue Algorithmen ?
- Direkte Berechnung ?

Ein Hittriplett

Zusätzliche Bedingungen

- $\ \, \bullet < \theta_{MS,i} >= 0 \\ \ \, \bullet < \theta_{MS,i}^2 >= \sigma_{MS}^2$
- $\Delta E \approx 0$

Triplett Spurfit

Annahmen

- Kein Positionsfehler
- Kein Energieverlust
- Dünne Streuebene am zweiten Hit

 $\chi_i^2(R_{3D}) = \frac{\varphi_{MS}(R_{3D})^2}{\sigma_{MS}^2} + \frac{\theta_{MS}(R_{3D})^2}{\sigma_{MS}^2}$

Linearisierung um Kreislösung → Direkte Berechnung 5

Triplett Spurfit

Annahmen

Minimiere

- Kein Positionsfehler
- Kein Energieverlust
- Dünne Streuebene am zweiten Hit

$$\chi_i^2(R_{3D}) = \frac{\varphi_{MS}(R_{3D})^2}{\sigma_{MS}^2} + \frac{\theta_{MS}(R_{3D})^2}{\sigma_{MS}^2}$$

Linearisierung um Kreislösung \rightarrow Direkte Berechnung 5

Triplett Spurfit

1. Überlappende Tripletts

$$\chi^2(\bar{R}_{3D}) = \sum \chi_i^2$$

- 2a. Minimiere χ^2 global
 - $\bar{R}_{3D} = \arg\min_{x} \chi^2(x)$
- 2b. Equivalent: Minimiere jedes Triplett

$$\bar{R}_{3D} = \frac{\sum w_i R_{3D,i}}{\sum w_i}$$

Mögliche Spurfits

${\sf Ber} \" ick sichtigt?$

	Eingabe	Ortsauflösung	Streuung
Helix	Hits	1	×
Triplet	Hits	×	1
GeneralBrokenLines	Hits, Referenz		1

Beispiel: Mu3e Geometrie

• B = 1 T

- $x/X_0 = 1\%$
- $\sigma = 23 \, \mu m$ (Pixel)
- p = 15-53 MeV

Impulsauflösung

Richtungsauflösung Azimutwinkel ϕ

1(

LHC-ähnliche Geometrie

• B = 2 T

•
$$x/X_0 = 2\%$$

• $\sigma = 25 \,\mu m$ (Pixel)

11

• p = 100–2000 MeV

Impulsauflösung

Zusammenfassung

Triplett Spurfit

- Spurfit nur mit Streuung
- Direkte Berechnung

Anwendungen

- Niedrige Impulse, Hohe Ortsauflösung
- Schnelle Onlinerekonstruktion
- Referenz für erweiterte
 Spurfits

Weitere Vorträge

T5.3 A. Kozlinskiy, Mu3e T41.3 M. Blago, LHC T41.6 D. vom Bruch, GPUs

http://www.psi.ch/mu3e

Backup

Die Mu3e Kollaboration

Universität Mainz

ETH zürich

Paul Scherrer Institute

ETH Zürich

Universität Zürich

Α1

Universität Genf

Universität Heidelberg

Karlsruhe Institute of Technology

General Broken Lines

see C. Kleinwort, NIM A, 673 (2012), 107-110