HV-MAPS Performance Tuning am Beispiel des Prototypen MuPix6

Jan Hammerich für die Mu3e Kollaboration

Physikalisches Institut Heidelberg

DPG Frühjahrstagung Wuppertal

Tuning

Mu3e Physik Motivation

- $\mu^+ \rightarrow e^+ e^- e^+$ ist im Standard Model um < 10⁻⁵⁴ unterdrückt
- Aktuelle exp. Grenze: BR < 10⁻¹² (SINDRUM)
- Ziel ist eine Sensitivität von 1 in 10¹⁶ Zerfälle
- Signal wäre ein Zeichen für neue Physik

Das Mu3e Experiment

- Myonen zerfallen in Ruhe: $\Sigma \vec{p} = 0$
- 1T Magnetfeld
- $p_e \leq \frac{m_\mu c}{2} = 53 \frac{MeV}{c}$ (Energie-Impuls-Erhaltung)
- Rekonstruktion der invarianten Masse aus den Signalen

Tuning

Hintergrundprozesse

kombinatorisch

Interne Konversion

- 10⁹ Zerfälle pro Sekunde
- Zufälliger Hintergrund
- Interne Konversion

Tuning

Detektoransprüche

- Gute Vertexauflösung
- Gute Zeitauflösung
- Gute Impulsauflösung
- Mehrfachstreuung dominiert

- Pixelgröße: $80 \times 80 \mu m^2$
- Zeitauflösung: < 20*ns*
- Materialbudget: $\leq 1\% X_0$
- Effizienz: > 99%

Hochspannungs monolithische aktive Pixelsensoren

I.Peric, P. Fischer et al., NIM A 582 (2007) 87

- Tiefe n-Wanne in p-dotiertem Substrat mit Hochspannung in Sperrrichtung
- Verarmungszone ist das aktive Sensorvolumen
- Schnelle Ladungssammlung via Drift
- Sensor kann auf ≤ 50µm gedünnt werden

Der Chip

Pixel Elektronik

- Ladungssensitive Verstärker im Pixel
- Komparator in der Peripherie
- Digitale Auslese
- Verhalten wird von Bias-Strömen kontrolliert
- Komparatorschwelle kann pro Pixel individuell angepasst werden (tuning)

Pulsformung

- Ströme steuern die Verstärkung und die Pulsform
- Dominieren den Stromverbrauch
- Kürzere Pulse erlauben kürzere Totzeiten

Pixel-Tuning

- Jedes Pixel hat einen eigenen 4-Bit DAC
- TuneDACs werden von einem globalen Bias Strom versorgt
- Bias Stom fließt in jedes Pixel
- \rightarrow verbraucht viel Leistung/Strom
- $\rightarrow\,$ soll minimal aber groß genug sein

Methodik

Messung der Rauschsschwelle (50%) Schiebe mit dem TDAC bis zu einer gewählten Schwelle

Baseline Map

Baseline Verteilung

Nachher

Baseline Map

Baseline Verteilung

Ergebnisse

TDAC Verteilung

- Baseline Verteilung viel schmaler
- \rightarrow Mehr Effizienz
 - Einige Ausreißer
- \rightarrow Methoden müssen noch weiter verbessert werden

Zusammenfassung

- Erste Tuningansätze zeigen vielversprächende Ergebnisse
- Effizienzsteigerung wird mit Testbeam-Messungen untersucht
- Weitere signalgetriebene Tuningmethoden werden untersucht
- Erste Tuningergebnisse bestätigen großes Potenzial der HV-MAPS Technologie

Ausblick

- Analyse des Testbeams März @ Desy
- MuPix7 serielle Auslese und interne State Machine
- Nächste MuPix Generationen mit größeren Chips

MuPix Generationen

	MuPix2	MuPix4	MuPix6	MuPix7
#Pixel	42 × 36	40 × 32	40 × 32	40 × 32
Pixelgröße	$30 imes 39 \mu m^2$	$80 imes 92 \mu m^2$	80 ×	80 ×
			$102 \mu m^2$	$102 \mu m^2$
Aktive	1.7 <i>mm</i> ²	9.4 <i>mm</i> ²	10.4 <i>mm</i> ²	10.4 <i>mm</i> ²
Fläche				
#DACs	8	9	12	12
Neuheit	Funktions-	digitale	2.	Serieller
	beweis	Auslese	Verstärker	Ausgang,
				interne
				State
				Machine
Auslese	Rolling	Priorität	Priorität	Priorität
	Shutter			