### Vertexrekonstruktion für das Mu3e Experiment

### Sebastian Schenk für die Mu3e Kollaboration

Physikalisches Institut, Universität Heidelberg

25. März 2014



#### Der Zerfall

### $\mu^+ \rightarrow e^+ e^- e^+$

#### verletzt Lepton-Flavour Erhaltung

Der Zerfall  $\mu^+ \rightarrow e^+ e^- e^+$ 

•  $\mu^+ \rightarrow e^+ e^- e^+$  möglich durch Neutrinooszillation



- Verzweigungsverhältnis  $B << 10^{-50}$ 
  - $\Rightarrow$  Unterdrückt im Standardmodell (SM)
  - $\Rightarrow$  Beobachtung klares Zeichen für Physik jenseits des SM

## Mu3e

- ▶ **Ziel**: Sensitivität Verzweigungsverhältnis  $B < 1 \times 10^{-16}$
- ► Beobachte mehr als 10<sup>17</sup> Myon Zerfälle ⇒ Stopp Rate O(GHz)
- ► 4 zylindrische Lagen Pixeldetektoren in Magnetfeld ⇒ Innerste Lage d ≈ 4 cm



Signal



Ein Merkmal von  $\mu^+ \to e^+ e^- e^+$  ist ein gemeinsamer Vertex. Dieser muss rekonstruiert werden.

# Herausforderungen

- Impulse  $p_e = 10 50 \text{ MeV}$  $\Rightarrow$  Vielfachstreuung  $\sigma \propto \frac{1}{p}$
- ▶ Magnetfeld B = 1 T
  ⇒ Stark gekrümmte
  Trajektorien
- Vertexrekonstruktion kompliziert



# Vertexrekonstruktion

- Vielfachstreuung dominant
  ⇒ Vernachlässige Ortsauflösung
- Linearisiere Track Modell um möglichen Vertex x<sub>v</sub>
- ▶ Definiere Streuwinkel  $\Phi(\mathbf{x}_v)$  und  $\Theta(\mathbf{x}_v)$
- Definiere und minimiere eine  $\chi^2(\Phi,\Theta)$ -Funktion
  - $\Rightarrow$  Bessere Schätzung von  $\mathbf{x}_v$



(b) Longitudinale Richtung

### Vertexrekonstruktion

Mathematische Beschreibung

•  $\chi^2$ -Funktion

$$\chi^2(\mathbf{x}_v) := \sum_{i=1}^3 \left[ \frac{\Phi_i^2(\mathbf{x}_v)}{\sigma_{\Phi,i}^2} + \frac{\Theta_i^2(\mathbf{x}_v)}{\sigma_{\Theta,i}^2} \right]$$

• Linearisiere Winkel um initiale Vertexposition  $\mathbf{x}_v = \mathbf{x}_{v,0} + \Delta \mathbf{x}_v$ 

$$\begin{aligned} \Phi_i(\mathbf{x}_v) &= \Phi_i(\mathbf{x}_{v,0}) + \langle \Delta \mathbf{x}_v, \nabla \Phi_i(\mathbf{x}_{v,0}) \rangle \\ \Theta_i(\mathbf{x}_v) &= \Theta_i(\mathbf{x}_{v,0}) + \langle \Delta \mathbf{x}_v, \nabla \Theta_i(\mathbf{x}_{v,0}) \rangle \end{aligned}$$

• Minimiere  $\chi^2(\mathbf{x}_v)$  bezüglich  $\Delta \mathbf{x}_v$ 

$$\nabla \chi^2(\mathbf{x}_v) = 0 \quad \Rightarrow \quad \mathbf{F} \Delta \mathbf{x}_v + \mathbf{C} = 0$$

Mehrere Iterationen

$$\mathbf{x}_{v,n+1} = \mathbf{x}_{v,n} + \Delta \mathbf{x}_{v,n}$$
 mit  $n \in \mathbb{N}$ 

# Ergebnisse

# Residuen Vertexposition





- Kein Bias
- ► Vertexauflösung  $\delta x_v$  von  $165 200 \,\mu\mathrm{m}$
- Beste Auflösung in longitudinaler Richtung

# $\chi^2$ -Verteilung



Abbildung : Verteilung von  $\chi^2(\mathbf{x}_v)$  für rekonstruierte Vertexpositionen  $\mathbf{x}_v$ .

•  $\chi^2(\mathbf{x}_v) \sim \chi_3^2 \Rightarrow \chi^2(\mathbf{x}_v)$  wohldefiniert bzgl. Vertexrekonstruktion

## Unterdrückung von Untergrund



Zufälliger Untergrund soll unterdrückt werden. Es gibt keinen gemeinsamen Vertex.

# $\chi^2 \text{-} \text{Verteilung}$ Zufälliger Untergrund



Abbildung :  $\chi^2(\mathbf{x}_v)$ -Verteilung für eine zufällige Untergrund Stichprobe.

# $\chi^2$ -Verteilung

Signal und Untergrund im Vergleich



Abbildung : Verteilung von  $\chi^2(\mathbf{x}_v)$  für rekonstruierte Vertexpositionen  $\mathbf{x}_v$ .

•  $\chi^2(\mathbf{x}_v)$  nützliches Kriterium, um Signal von Untergrund zu trennen

### Effizienz vs. Unterdrückung



Abbildung : Effizienz vs. Unterdrückung auf Basis eines  $\chi^2$  Schwellwerts.

#### S. Schenk (Uni Heidelberg)

25.03.2014 15

### Rekonstruktion der invarianten Masse





# Rekonstruktion der invarianten Masse

Auflösung



Abbildung : Verteilung der Residuen der rekonstruierten invarianten Masse bzgl. der Myon Masse  $m_{\mu}$  für Signale, rekonstruiert im Ursprung und am rekonstruierten Vertex.

Fazit



- Vertexrekonstruktion funktioniert
- > Vertexauflösung  $\delta x_v$  von  $165 200 \,\mu\mathrm{m}$
- Unterdrückung von Untergrund