Gaskühlung eines dünnen Silizium-Pixeldetektors für das Mu3e-Experiment

Adrian Herkert für die Mu3e-Kollaboration

Physikalisches Institut Universität Heidelberg

26.03.2014

Das Mu3e-Experiment Suche nach dem Zerfall $\mu^+ ightarrow e^+e^-e^+$

- angestrebte Sensitivität für das Verzweigungsverhältnis: 10⁻¹⁶
- wird durchgeführt am PSI
- Phase I ab 2015: $\sim 10^8$ Myonen/s
- Phase II ab 2019: > 10⁹ Myonen/s (HiMB)

Das Mu3e-Experiment

Untergrund

Interne Konversion

 \rightarrow hohe Impulsauflösung notwendig

Zufällige Ereignisse

 Kombination aus gewöhnlichem Myonzerfall und zusätzlichem e⁻

\rightarrow hohe Impuls-, Zeit- und Vertexauflösung notwendig

Das Mu3e-Experiment

Detektordesign

- B = 1T
- Spurdetektor: 4 zylindrische Lagen dünner Silizium-Pixelsensoren
- Zeitmessung:
 - Szintillierende Fasern ($\sigma_t \sim 1 \, ns$)
 - Szintillierende Kacheln ($\sigma_t \sim 100 \, ps$)

Der Spurdetektor

Energie der Zerfallselektronen \leq 53 MeV

- \rightarrow Mehrfachstreuung dominiert
- ightarrow Detektor aus Minimum an Material

- High Voltage Monolithic Active Pixel Sensors (HV-MAPS)
 - schnell (Driftzeit < 10 ns)
 - können auf 50 μm gedünnt werden

(s. T88.9, L. Huth & T115.4, M. Kiehn)

- $25 \, \mu m$ Kapton Flexprint
- Tragestruktur aus 25 μm dickem Kapton

ightarrow Gesamtdicke < 0,1 % von X_0

A. Herkert PI I

5/15

Kühlkonzept

- HV-MAPS heizen aufgrund aktiver Komponenten mit $\sim 150 \ mW/cm^2$
- Betriebstemperatur < 70°*C*
- Kühlung mit gasförmigem Helium, um Streuung der Zerfallsprodukte zu minimieren

Experimenteller Test des Kühlkonzepts Setup

Detektormodell

- Modell der zwei äußeren Detektorlagen
- Laminierte Folie
 - $25 \,\mu m$ Aluminium auf $25 \,\mu m$ Kapton
- Widerstandsheizbar $(\mathsf{R}\sim13\,\Omega)$
- Mechanisch stabil

A. Herkert

PI Heidelberg

Gaskühlung eines dünnen Silizium-Pixeldetektors für das Mu3e-Experiment 8

Simulationen

CFD Simulation

- CAD Modell mit Autodesk AutoCAD 2014
- Autodesk Simulation CFD 2014 (FEM)

Simulierte Temperaturprofile

0.5 m/s

0 m/s

3.0 m/s

3.5 m/s

v= 4.0 m/s

350 400

Helium

10/15 A. Herkert PI Heidelberg Gaskühlung eines dünnen Silizium-Pixeldetektors für das Mu3e-Experiment

Gemessene Temperaturprofile

Vergleich der gemessenen und simulierten Temperaturprofile

A. Herkert PI Heidelberg Gaskühlung eines dünnen Silizium-Pixeldetektors für das Mu3e-Experiment

Gemessene Maximaltemperaturen abhängig von der Windgeschwindigkeit v

Vergleich der gemessenen und simulierten Maximaltemperaturen

- Nach den bisherigen Tests scheint das Kühlkonzept für den Mu3e-Spurdetektor zu tragen
- Die nächsten Schritte:
 - Messung mit Helium
 - Test der mechanischen Stabilität