

Schnelle Auslese des HV-MAPS Trackers des Mu3e Experiments

Simon Corrodi

für die Mu3e Kollaboration

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Der Zerfall: $\mu^+ ightarrow e^+ e^- e^+$

- Lepton-Flavor verletzend (LFV)
- μ in Ruhe
- im Standard Model unterdrückt $<< 10^{-50}$
- Sensitivität besser als 10⁻¹⁶
- \blacksquare 2 \cdot 10⁹ μ/s
- Paul Scherrer Institut (CH)

Untergrund

Zufällige Kombination $\mu^+ \rightarrow e^+ \nu_e \bar{\nu_\mu}$ und zusätzlichem e^-

Interne Konversion $\mu^+ \rightarrow {\rm e}^+ {\rm e}^- {\rm e}^+ \nu_e \bar{\nu_\mu}$

Unterdrückeung durch gute Auflösungen:

- \blacksquare Zeit (\sim 100 ps)
- Vertex (~ 200 µm)

Der Detektor: Target

- $\blacksquare \ \mu$ zerfallen in Ruhe
- 1 T Magnetfeld

Der Detektor: 1. Doppellage Pixel-Sensoren

- HV Monolythischer Aktiver Pixel Sensor (HV-MAPS)
- Pixel: 80 μm x 80 μm
- gedünnt < 50 µm

Der Detektor: 2. Doppellage Pixel-Sensoren

- Impuls: 10 50 MeV/c
- Auflösung: 0.5 MeV/c
- Mehrfachstrueung dominiert

Der Detektor

- Pixel Sensoren: 4860
- Fasern: ~ 4000
- Kacheln: ~ 7000

Die Datenerfassung

Konzept

Jeder PC in der Filterfarm sieht den ganzen Detektor in einer kurzen Zeitperiode.

Herausforderungen

- 1 Tbit/s Daten
- Platzverhältnisse

Die Pixel-Sensoren

- Null-unterdrückt
- Trigerlos
- Zeitlich unsortiert
- \blacksquare Rate in den aktivsten Sensoren \sim 0.1 GHz

LVDS Kapton Flexprints

- \blacksquare zwischen 0.8 und 1.2 Gbit/s
- 25 μm Kapton und 12 μm Al

Laserplatform an der Universität Heidelberg

Front-End FPGAs

- Sortieren der Daten
- Slow-Control

Optische Übertragung

Transceiver Einstellungen

8 Gbit/s: schlechte Einstellungen

8 Gbit/s: gute Einstellungen

Transceiver Einstellungen

8 Gbit/s: schlechte Einstellungen

8 Gbit/s: gute Einstellungen

Augen sind optisch nur schwer zugänglich \rightarrow Bit-Fehlerrate (BER)

Disparität

Unterschied zwischen übertragenen "1"- und "0"-Zuständen

Daten	Übertragung	Wort Disparität	Sum Disparität
			0
1100'0111	1100'0111	2	2
0100'0100	0100'0100	-4	-2
0100'0011	0100'0001	-2	-4
1100'1001	1100'1001	0	-4

Disparität

Unterschied zwischen übertragenen "1"- und "0"-Zuständen

Daten	Übertragung	Wort Disparität	Sum Disparität
			0
1100'0111	0 1100'0111	1	1
0100'0100	0 0100'0100	-5	-4
0100'0011	1 1011'1100	3	-1
1100'1001	1 0011'0110	1	0

Disparität

Unterschied zwischen übertragenen "1"- und "0"-Zuständen

Daten	Übertragung	Wort Disparität	Sum Disparität
			0
1100'0111	0 1100'0111	1	1
0100'0100	0 0100'0100	-5	-4
0100'0011	1 1011'1100	3	-1
1100'1001	1 0011'0110	1	0

- Paritäts-Kontrolle ist notwendig
- 80 Bit ausreichend

Optische Übertragungen

"SFP"

- 8 Kanäle parallel
- 6.4 Gbit/s (BER < 10⁻¹⁶ (95%C.L.)

"QSFP"

- 4 Kanäle in einem Kabel
- 11.3 Gbit/s (BER < 10⁻¹⁶ (95%C.L.))

Die ganze Datenauslese

Zusammenfassung

- 1 Tbit/s Daten
- Null-unterdrückt und trigerlos
- optische Übertragungen von 6.4 Gbit/s bzw. 11.3 Gbit/s (80 Bit Paritäts-Kontrolle und optimalen Einstellungen)
- Kapton Strukturen können produziert werden

Simon Corrodi (Mu3e) Schnelle Auslese des H

5) Direct Memory Access (DMA)

- Atera Stratix V

Koordinaten Transformation
 von Pixel-Adresse zu globalem System

Der Datenfluss Detektor

Phase	la	lb	II
# Pixel Sensoren	1116	2988	4860
# Fiber Sensoren	-	\sim 4000	~ 4000
# Tiles Sensoren	-	~ 3500	~ 7000

Phase la

- Viele Komponenten getestet
- MiniPOD

Wieso? $\mu^+ \rightarrow e^+ e^- e^+$

58, 315, 2008.

 $\begin{array}{l} \textbf{MEG} \text{ (2013, running)} \\ \textbf{B}(\mu^+ \rightarrow e^+ \gamma) {<} 5.7 \cdot 10^{-13} \end{array}$

SINDRUM II (2006) B($\mu^{-}Au \rightarrow e^{-}Au$)< 7 $\cdot 10^{-13}$

Pixel Adressierung

Der Beam

Protonen Beam

http://www.psi.ch/media.

2.4 mA Protonen 590 MeV/c

Pha<u>se</u> Ι: *π*Ε5

Target E. http://www.psi.ch.

- bis $2\cdot 10^8~\mu/s$
- 28 MeV/c
- polarisiert

Phase II: HiMB

- bis $3 \cdot 10^{10} \ \mu/s$ - needed $2 \cdot 10^9 \ \mu/s$

in Planung