Performance and integration studies of a first large scale HV-CMOS prototype

Lennart Huth Physikalisches Institut Heidelberg

16-19 Jan 2018

Motivation

- Mu3e searches cLFV
- Final SES target: 1 in 10¹⁶
- High rate (10⁹ muons/s)
- Low momentum
 - \rightarrow Scattering dominates resolution
- Almost everything will be background
 → Need novel pixel tracker HV-MAPS

HV-MAPS

- Monolithic sensor
- p-n-junction
- HV between p-n
- Drift based charge collection
- In-pixel amplification
- Digital partner cell with
 - \rightarrow Digitization
 - \rightarrow Time stamping
 - $\rightarrow \, {\rm ToT/charge} \,\, {\rm measure}$
- RO statemachine and serializer

(I.Peric, P. Fischer et al., NIM A 582 (2007) 876)

MuPix8 in numbers

- 128 x 200 pixel
- $80 \times 81 \,\mu\text{m}^2$ pixel size
- 4 LVDS links at 1.25 GBit/s
- 2 comparators
- 2/3 bit tuneDACs
- All crucial pads on bottom side
- Pixel masking
- Temperature stable voltage references
- On-chip thresholds
- Temperature diode

MuPix Telescope

MuPix Telescope

- 4 MuPix8 layers
- 2 tiles for time reference
- On-FPGA time sorting and data buffering optional
- FPGA to steer sensors and receive data
- Data transfer to PC via polling or DMA
- Multi-threaded software DAQ
- Results within 5 mins after data taking
- MuPix/AtlasPix used as DUT
 - \rightarrow Only MuPix in this talk

Test beam measurements - all results are preliminary!

setup and runs

- 2 campaigns at desy
- Telescope setup and mimosa setup in use
- Tested various settings and sensors
- Time resolution, efficiency, noise, clustering and crosstalk
- Data analysis still ongoing

Time resolution

- Matrix A uses the transmission scheme from MuPix7
- Matrix B+C use a new transmission scheme and is not optimized
- Matrix A has significantly better time resolution
- We will focus on Matrix A for the rest of the talk
- Low threshold

Time resolution

- Matrix A uses the transmission scheme from MuPix7
- Matrix B+C use a new transmission scheme and is not optimized
- Matrix A has significantly better time resolution
- We will focus on Matrix A for the rest of the talk
- Low threshold

Time resolution

80 100

ToT and Timewalk

ToT and timewalk maesurements

ckdivend1=0x1, ckdivend2=0xf

Lennart Huth, Jag. 2918meier, J. Hammerich, A. Herkert, L. Huth, J. Kröger Oct 2017

Pixel masking

- 25k pixels
- Some will be really noisy/broken
 → pixel masking
- Tested by drawing a nice logo
- Routine can be used in telescope and single setup
- Voltage level to store masking slightly to high some pixels are not masked correctly.

Efficiency and noise

Threshold 45 mV

Thresholdscan at -30V

- Essentially noise free (mu3e allows up to 10 Hz/pixel)
- Chip untuned
- Up to 25 pixels ignored in analysis
- 98.5 % efficiency seen
- HV is only -30 V
 → HV can be increased

Increasing Bias Voltages

- VDD/VDDA = 1.9 V
- VSSA = 1.1 V
- Efficiency of 99.1%
- Time resolution improves by 15%
- Noise stays unchanged
- Substantial voltage drop over the MuPix8

Crosstalk and clustering

- Connection lines between active pixel and digital periphery are crosstalk effected
- Crosstalk can be calculated by looking at differences in vertical and horizontal cluster sizes (pixels are squared)
- Double and triple cluster in 1d indicate crosstalk
- Line crosstalk only in vertical direction \rightarrow 11.8 % for a threshold of 45 mV

- Connection lines between active pixel and digital periphery are crosstalk effected
- Crosstalk can be calculated by looking at differences in vertical and horizontal cluster sizes (pixels are squared)
- Double and triple cluster in 1d indicate crosstalk
- Line crosstalk only in vertical direction \rightarrow 11.8 % for a threshold of 45 mV

- Connection lines between active pixel and digital periphery are crosstalk effected
- Crosstalk can be calculated by looking at differences in vertical and horizontal cluster sizes (pixels are squared)
- Double and triple cluster in 1d indicate crosstalk
- Line crosstalk only in vertical direction \rightarrow 11.8 % for a threshold of 45 mV

- Connection lines between active pixel and digital periphery are crosstalk effected
- Crosstalk can be calculated by looking at differences in vertical and horizontal cluster sizes (pixels are squared)
- Double and triple cluster in 1d indicate crosstalk
- Line crosstalk only in vertical direction \rightarrow 11.8 % for a threshold of 45 mV

Clustering

- First studies \rightarrow very preliminary
- Only clusters with matched hits are counted
- Cluster size 180 mV threshold: 1.053
- Cluster size 45 mV threshold: 1.384
- Cluster sizes are effected by crosstalk

- MuPix8 telescope in operation and functional
- Time resolution of 12.8 ns (20 ns low power settings)
- Efficiencies above 98% at low noise (99.1% for increased supply voltages)
- No timewalk observed at operational thresholds
- Crosstalk and clustering seen, but seems to be smaller than expected average clustersize < 1.4
- Increasing VDDA, VDD and VSSA by 100mV each improves performance
- Injection tests and lab studies in preparation/ongoing

BACKUP

Masked pixels

Pixels with a factor 10 more rate above the average and at least 2 Hz rate are masked

Temperature diode

Lennart Huth Jan 2018

Temperature diode

MuPix8 readout

auxiliary

- Setup allows to use a reference frequency (w PLL) or external clock (w/o PLL)
- Tested with 10 MHz external clock: looks as if threshold can be lowered further than running at full speed (125 MHz reference → factor 62.5 faster!)
- Will be investigated using telescope

• Side note: Checked data quality of MuPix telescope @ 1.25 Gb/s: no bit errors observed for all channels: BER < 10⁻¹⁴

Frequency tests - 10 MHz external clock commissioning

- Bin size 500 ns
- Commissioning of single MuPix setup with slow external clock (10 MHz)
- Top: tile-MuPix correlation
- Bottom: time stamp difference between two consecutive MuPix hits

DAC Scans at VDD/A = 1.9 V & VSSA = 1.1 V

efficiency [%]	noise [kHz/chip]	VNPix	VnFbPix	VNOutPix
99.1	6.4 kHz	0×18	0×10	0×12
99.0	5.6 kHz	0×12	0×10	0×12
98.9	4.1 kHz	0×15	0×10	0×12
98.4	2.1 kHz	0x1B	0×10	0×12
96.8	1.5 kHz	0×1E	0×10	0×12
98.7	2 kHz	0×18	0×13	0×12
98.7	1.9 kHz	0×18	0×16	0×12
98.6	7.3 kHz	0×18	0×10	0×6
98.8	1.9 kHz	0×18	0×10	0×9
98.8	2.0 kHz	0×18	0×10	0×C
98.8	2.2 kHz	0×18	0×10	0×F

Default DACs

VNRegCasc: 20 VDel· 16 VPComp: 5 VPDAC: 0 BLResDig: 10 VPDelDclMux: 6 VNDelDcIMux: 12 VPDelDcl: 6 VNDelDcl: 12 VPDelPreEmp: 6 VNDelPreEmp: 12 VPDcl: 24 VNDcl: 12 VNLVDS: 63 VNIVDSDel: 0 Lennart Huth Jan 2018

Bandgap1/2_on: 0 Biasblock1/2_on: 5 **VPVCO: 10** VNVCO: 10 slowdownend: 0 timerend: 3 BI ResPix: 5 VNPix: 20 VNFBPix: 10 VNFollPix: 10 VNPix2: 0 VNBiasPix: 0 VPL oadPix: 5 VNOutPix: 16 VPFoll: 10 VNDACPix: 0

maxcycend: 63 VPPump: 20 resetckdivend: 3 SelectTest: 0 SelectTestOut: 0 DisableHitbus: 0 sendcounter: 0 Linkselect: 0 Termination: 0 AlwaysEnable: 1 ThHigh: 336 ThLow: 293 ThPix: 463 BLPix: 463 (800mV) BLDig: 256 (500mV) tsphase: 0 ckdivend2[.] 7 ckdivend: 0 VPRegCasc: 20 VPRamp: 0 VPBiasReg: 30 VNBiasReg: 30 enable2threshold: 0 enableADC: 0 Invert: 0 SelFx: 0 SelSlow: 0 EnablePLL: 1 Readout reset n: 1 Serializer_reset_n: 1 Aurora_reset_n: 1

Lazy bits

Lazy bits

VDD/A 1.9 V & VSSA 1 V

VDD/A 1.8 V & VSSA 1.1 V

Correlation of 5 LSBs in Sensor 0 and Trigger 0

Column and row dependence of the time resolution

24