

Testbeam Results for the Mu3e Scintillating Fibre Detector

6th Beam Telescopes and Test Beams Workshop 2018

Lukas Gerritzen

on behalf of the Mu3e Fibre Group:

A. Bravar, S. Corrodi, A. Damyanova, L. Gerritzen, C. Grab, D. Miranda, A. Papa

Search for the lepton-flavour violating decay $\mu^{\scriptscriptstyle +} \to {\rm e^+e^-e^+}$ (in SM: ${\cal BR} < 10^{-54})$

- goal sensitivity < 10⁻¹⁶ current: 10⁻¹² (SINDRUM)^a
- muons decay at rest DPHYS ^a *BR* limit at 90 % C.L.

- $p_{
 m e} \lesssim rac{m_{\mu}}{2} pprox$ 53 MeV
- e-tracks bent in 1 T

solenoid field

Tracking: 4 Si Pixel Layers (HV-MAPS)

- high efficiency, spatial resolution
- thinned to $50\,\mu\text{m}$
 - $\rightarrow\,\sim$ 0.1 % X_0 per layer

See also talk by L. Huth

Timing: Scintillating Fibres and Tiles

- $\mathcal{O}(500\,\text{ps})$ (fibres); \sim 70 ps (tiles)
- background reduction and charge ID
- light detection with SiPMs

DPHYS

The Mu3e Scintillating Fibre Detector

Setup

- 12 ribbons (1.6 cm \times 28–30 cm)
- 3 layers of 250 µm fibres
- right below second pixel double layer
- LHCb type: column array SiPMs DPHYS

Requirements

- low material budget (< $0.5 \% X_0$, $\leq 1 \text{ mm}$)
- high efficiency
- timing < 500 ps
- rates up to 250 kHz/fibre

The Mu3e Scintillating Fibre Detector Up Close

final: 128 \times 0.25 mm = 32 mm

Hamamatsu S13552: column array SiPM: 128 cells,

 $250\,\mu m \times 1.6\,mm$ each

SciFi Readout – custom ASIC: MuTRiG

mixed mode, \approx 50 ps t-stamps

high impedance, opt. differential

Tiles: both Thresholds Fibres: only Timing-Threshold and Energy-Flag *"time mode"*

	STiC3.1	MuTRiG
	done	outlook
number of channels	64	32
LVDS speed [Mbit/s]	160	1250
event size [bit]	48	47
time mode	-	26
event rate / chip [MHz]	${\sim}$ 2.6	\sim 20
time mode	-	${\sim}$ 38
event rate / ch [kHz]	${\sim}40$	${\sim}650$
time mode	-	\sim 1200
power per channel [mW] 35	35
size [mm x mm]	5x5	5x5

Fibres Under Study

Ribbons (30 cm \times 0.8 cm) with 2, 3 or 4 layers of 250 μm thick, round, double cladding fibres. Kuraray

- SCSF 78 MJ with 20 % TiO_2 in glue
- SCSF 81 MJ with 20 % TiO_2 in glue

Nanostructured Organosilicon Luminophores

• NOL 11 clear and with TiO₂ in glue

Experimental Setup

- crossed fibres as 1 mm \times 1 mm trigger
- Hamamatsu S13552 (128 channels, trenches, column array SiPM)
- 32 channels readout per side with custom DRS4 board (Uni Geneva)

ETH zürich

Waveforms

Light Yield

D PHYS

ETH zürich

Spectra and Cuts

Determine amplitudes corresponding to number of photons using charge. Charge is not used in the further analysis.

Time Resolution

NOL 11, 3 layers, no TiO₂

To study timing: look at difference between first photon left and right.

Efficiencies (threshold 0.5 phe, $N_{Ch.} \ge 2$ left and right)

NOL 11 are very efficient compared to SCSF

DPHYS

Outlook – MuTRiG BTTB5

- last generation SiPM column array
- last generation scifi ribbons
- STiC predecessor of MuTRiG

BTTB6 and beyond

- final SiPM-like column array
- improved ribbon production + (NOL)
- MuTRiG

Summary

- NOL already very efficient and offer light yield comparable to SCSF-78MJ
- no significant difference between ribbons with and without TiO₂ (previous testbeams)

Fibre	#Layers	Eff. (±3 σ)	σ first $t_1 - t_2$ [ps]	#phe
78MJ, TiO ₂	4	0.96	702	24.6
81MJ, TiO ₂	4	0.93	617	13.2
NOL11, TiO ₂	2	0.89	511	11.9
NOL11, TiO ₂	3	0.93	427	18.2
NOL11, clear	3	0.96	408	16.9
NOL11, TiO ₂	4	-	426	23.1
NOL11, clear	4	0.97	432	22.4

BACKUP SLIDES

Data Rate and Clustering	vent rate	data rate
at 10 ⁸ stopped μ /s	[M/s]	[Gbit/s]
SciFi detector	274	
Scintilating Fibres (235k/s/fibre)	1083	
SiPM columns signal (420 k/s/column)	1290	36.1
SiPM columns dark counts (${\sim}300$ k/s/column) 922	25.8
SiPM columns total	2211	61.9
clustering		20.0

 best timing: use tracking

Efficiency for Different Thresholds

Efficiency within $3\sigma \ \Delta \ t \ vs \ Clustering \ cuts$

16

D PHYS

Time Resolution: Different Fit Models

MuTRiG

- UMC 180nm CMOS
- analog Front-End + TDC + digital part
- **D**PHYS fully differential analog front-end
 - high speed data link (1.28 Ghns)

