

# Scintillating Fibers for High Resolution Time Measurements?

Simon Corrodi on behalf of the Mu3e Fibre Group

BTTB5, 25<sup>th</sup> January, 2017, Barcelona







# Scintillation: Organic Plastic Scintillators

Polystyrene (PS) + dopants (scintillator, wavelength shifter) or Polyvinlyltoluene (PVT)

particle /



# (Scintillating) Fibers

| part         | material                 | n    |
|--------------|--------------------------|------|
| core:        | polystyrene (PS)         | 1.59 |
| cladding I:  | polymethyl methacrylate  | 1.49 |
|              | "plexiglas" (PMMA)       |      |
| cladding II: | fluorinated polymer (FP) | 1.42 |



$$\Theta_{\text{total reflection}} = \arcsin\left(\frac{n_{\text{cladding}}}{n_{\text{core}}}\right)$$

#### Kuraray: SCSF-81M



|                  | Kuraray  | Saint-Gobain |
|------------------|----------|--------------|
|                  | SCSF-81M | BCF-12       |
| decay time [ns]  | 2.7      | 3.4          |
| attenuation [m]  | > 3.5    | 2.7          |
| yield [phot/keV] | $\sim 8$ | $\sim 8$     |

# Scintillating Fibers

#### round



Mu3e prototype, 4 layers 250 µm.

#### squared



MEG II proposal: "active target".

#### hexagonal



CERN RD7 1989, bundle out of  $60\,\mu\text{m}.$ 

$$\varepsilon_{\mathsf{capture}} \geq \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\alpha} \mathrm{d}\varphi \mathrm{d}\Theta$$



| $\varepsilon \geq [\%]$ | sir |
|-------------------------|-----|
| round                   | 3.  |
| square                  | 4.  |

| cladding |        |  |
|----------|--------|--|
| single   | double |  |
| 3.1      | 5.4    |  |
| 4.4      | 7.3    |  |



PDE: "flat":  $d_{\text{hit-det}} \cdot 12\% \cdot \left(\frac{c}{n}\right)^{-1} \approx 7 \text{ ps} \cdot d[\text{cm}]_{5/18}$ 

# Silicon Photomultipliers

Arrays of avalanch photo diodes (APD) in Geiger mode.



pixel: 10-100  $\mu$ m, sensors: 1-6 mm, arrays ...



- most information
- fan-out needed
- max channels

# Fan-Out & Columns

- collect more light in the same cells
- optimization on event structure

- gain up to  $10^8$
- photon detection efficiency 30-50%
- moderate HV, compact, B-field resistant
- dark counts  $\mathcal{O}(MHz)$



- easy: no fan-out
- granularity of SiPM  $\sim$  fibres

### The Mu3e Experiment



# Mu3e: Scintillating Fibres for Timing



#### Requirements

- high track efficiency(~99%)
- excellent timing (<1 ns)
- low material budget  $(X/X_0 \le 0.5\%)$
- moderate granularity

Multiple Coulomb Scattering



#### **Used Fibre Configuration**

- 3-4 fibre-layers
- catch first photons (both sides)
- readout outside of acceptance
- 250  $\mu m$  fibres, SiPM columns

# Prototypes (4 layers, 250 $\mu$ m)

#### Squared Fibres (PSI)



50 cm long fibres additional Al coating Saint Gobain BCF-12 Hamamatsu S13360-1350CS

#### Round Fibres (GE, ZH)







36 cm long fibres optional TiO<sub>2</sub> in glue Kuraray SCSF-81M Hamamastu S12571-050P

SiPM column arrays (LHCb)



# Square Results





#### Efficiency:

| $\varepsilon_{\sf single}$ [%] | OR | AND |
|--------------------------------|----|-----|
| 0.5 phe                        | 97 | 71  |
| 1.5 phe                        | 79 | 34  |

#### Number of Photons:



Summed photons from both sides.

| $arepsilon_{triple}$ [%] | OR  | AND |
|--------------------------|-----|-----|
| 0.5 phe                  | >99 | 95  |
| 1.5 phe                  | 97  | 67  |

# Round Results



# Readout: pre-amplifiers & DRS4 evaluation (PSI)



# full waveforms

# up to 8 DRS4 v5 4-channel



- 5 Gsps, up to 2048 values
- common trigger
- DAQ: O(100 Hz)
- jitter per board pprox 130 ps

Many more: VME TDC, QDC; STiC, TOFASIC, NINO\*, PETA\*, KLausS, TRIROC, ...

# Readout ASIC: STiC/MuSTiC (KIP Heidelberg)



fibre detectors: timing threshold

STiC3.1 available

64 chs, max 2.6 Mevents/s/chip used DAQ: 700 kevents/s/chip

- jitter:  $\mathcal{O}(30 \text{ ps})$
- self triggering

**MuTRiG** development 32 chs, max 1.1 Mevents/s/ch + external trigger





# Scintillating Fibres for High Resolution Time Measurements?



# Appendix

# Scintillating Fibre Trackers

#### LHCb upgrade



LHCb tracker upgrade TDR.





#### NA61/Shine

fixed target experiment tracking of incoming beam

| configuration | resolution $\sigma_{\rm x}$ | ε    |
|---------------|-----------------------------|------|
| single layer  | $\sim 130\mu m$             | 90 % |
| 5 layers      | $\sim 160\mu m$             | 95 % |

#### common

- high hit efficiency(~99%)
- low material budget  $(X/X_0 \le 1\%)$
- readout outside of acceptance
- tracking high granularity
- time resolution: resolve banch (25 ns)

# Crosstalk





- TiO<sub>2</sub> in glue
  - crosstalk-reduction (ribbon dependent)
  - 10-20 % yield increase (diffuse)
  - ${\sim}10\,\%$  cluster size reduction

- significant cross-talk reduction
- ${\sim}60\,\%$  yield increase (diffuse)

| material       | n           | light loss   |             |
|----------------|-------------|--------------|-------------|
|                |             | bare         | AI          |
| optical cement | 1.56        | ${\sim}40\%$ | $\leq 1 \%$ |
| Araldite rapid | ${\sim}1.5$ | ${\sim}30\%$ | $\leq$ 1 %  |
| optical grease | 1.465       | ${\sim}20\%$ | $\leq$ 1 %  |



#### References

slide 2: "Wikipedia Benzene Article." https://en.wikipedia.org/wiki/Benzene.

slide 2: "MPPC and MPPC module for precision measurement", HAMAMATSU PHOTONICS K.K., 2016.

slide 3: Kuraray Co., Ltd., Plastic Scintillating Fibers.

slide 3: Saint-Gobain Ceramics & Plastics, Inc, Scintillating Optical Fibers.

slide 4: E. Ripiccini, "An active target for the MEG experiment", dissertation, Sapienza Roma, 2015.

slide 4: C. D'Ambrosio, "A short Overview on Scintillators", CERN Academic Training Programme, 2005. slide 16: "LHCb Scintillating Fibre Tracker Engineering Design Review Report: Fibres, Mats and Modules.",

LHCb-PUB-2015-008, 2015.

slide 16: "LHCb Tracker Upgrade Technical Design Report", CERN/LHCC 2014-001, LHCb TDR 15, 2014. slide 16: A. Damyanova at. al., "A Scintillating Fibre System Readout by SiPMs for Precise Time and Position Measurements", PhotoDet2015. slide 13: W.Shen, KIP Heidelberg.

slide 12: R. Gredig, "Scintillating Fiber Detector for the Mu3e Experiment", dissertation, University Zurich, 2016. slide 12 PETA : I. Sacco et. al, "PETA4: a multi-channel TDC/ADC ASIC for SiPM read-out", JINST, 8 C12013, 2013.

slide 12 M. Rolo et. al., "A 64-channel ASIC for TOFPET applications", IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), pages 1460–1464, 2012.

slide 12 NINO: F. Anghinolfi et. al., "NINO: AnUltrafast Low-Power Frond-End Amplifier Discriminator for the Time-of-Flight Detector in the ALICE Experiment", IEEE transactions on nuclear science, 51, 2004.

slide 12 TRIROC: S. Ahmad et. al., "Triroc: A Multi-Channel SiPM Read-Out ASIC for PET/PET-ToF

Application", Nuclear Science, IEEE Transactions on, 62(3) 664-668, June, 2015.

slide 12 KLauS: K. Briggl et. al., "KLauS: an ASIC for silicon photomultiplier readout and its application in a setup for production testing of scintillating tiles", JINST, 9 C02013, 2014.

slide 12 MuTRiG: H. Chen et. al., "MuTRiG: a mixed signal Silicon Photomultiplier readout ASIC with high timing resolution and gigabit data link", JINST 12 C01043, 2017.