

Status of the Mu3e Detector

Dirk Wiedner, Heidelberg On Behalf of the Mu3e Collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

28.02.2017 • 1

The Mu3e Signal

- $\mu^+ \rightarrow e^+ e^- e^+$ rare in vSM
 - o Branching ratio <10⁻⁵⁴
 →unobservable
- Enhanced in BSM theories

- Rare decay ($BR < 10^{-12}$, SINDRUM '88)
- For BR O(10⁻¹⁵)
 - > >10¹⁵ muon decays
 - > High decay rates $O(10^8 \,\mu/s)$

Signal properties:

 $\Sigma E_e = m_\mu c^2$

$$\sum \vec{p_e} = 0$$

- Common vertex
- Coincident in time
- Maximum electron momentum 53 MeV/c

The Mu3e Background

- Accidental combinations

 μ⁺→e⁺νν & μ⁺→e⁺νν & e⁺e⁻
 many possible combinations
- $\sum E_e \neq m_\mu c^2$
- $\sum \overrightarrow{p_e} \neq 0$
- Good time and
- Good vertex resolution required

The Mu3e Background

- Irreducible background:

 µ⁺→e⁺e⁻e⁺νν
- $\sum E_e < m_\mu c^2$
- $\sum \overrightarrow{p_e} \neq 0$
- Good momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

• Dirk Wiedner, Mu3e

Challenges

- High rates:
- Good time resolution:
- Good vertex resolution:
- Excellent momentum resolution:
- Extremely low material budget:

$$\sigma_p \sim \frac{1}{p} \sqrt{\frac{x}{X_0}}$$

up to 10⁸ µ/s 100 ps ~200 µm ~ 0.5 MeV/c **1%. X**, per Si-Tracker Layer

The Mu3e Experiment

- Muon beam
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

The Mu3e Experiment

- Muon beam
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

The Mu3e Experiment

- Muon beam O(10⁸/s)
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

PSI µ-Beam

Paul Scherrer Institute Switzerland:

- 2.2 mA of 590 MeV/c protons
- Surface muons from target E
- Up to $\sim 10^8 \,\mu/s$

>>10¹⁵ muon decays per year

28.02.2017 • 9

PSI µ-Beam

Paul Scherrer Institute Switzerland:

- 2.2 mA of 590 MeV/c protons
- Surface muons from target E
- Up to $\sim 10^8 \,\mu/s$
- $> > 10^{15}$ muon decays per year

Timing Detectors

28.02.2017 • 12

Timing Detectors

Fiber detector

- Before outer pixel layers
- o 250 µm scintillating fibers
- 0.3% X/X₀
- o SiPMs
- $\circ \leq 1$ ns resolution

Tile detector

- After recurl pixel layers
- \circ 6.5 x 6.5 x 5.0 mm³
- o SiPMs
- $\circ \leq 100 \text{ ps resolution}$

Fiber Detector

Fiber ribbon modules

- 32 mm wide
- ~290 mm long
- 3 layers fibers of Ø 250 µm
- SiPM arrays (LHCb type)
- 4 MuTRiG readout chips

Talk: "Scintillating Fibre Detector for the Mu3e Experiment", Simon Corrodi on Monday

Scintillating fiber ribbons

Tile Detector

- Scintillating tiles

 6.5 x 6.5 x 5.0 mm³
- 7 Tile modules per station

 448 tiles/module
 Attached to end rings
 Pipe
- SiPMs attached to tiles

 Front end PCBs below
 Readout through MuTRiG

Rendering of Tile Detector station

Time Resolution

- Coincidence between 2 tiles in a row
- Time resolution \approx 70 ps
- Time-walk effect \approx 14 ps

Pacariposituyen		
Scintillator tiles	Inner pout layers	
	p Beam Target	
	Scincilluting fibres	
	Outer pixel layers	

Pixel Tracker

Successful feasibility studies for:

- ✓ Module mechanics
- ✓ He-cooling with low vibration
- ✓ Ultra-thin flexible circuit boards
- HV-CMOS small prototypes
- Readout board prototype

Pixel Tracker Rendering of CAD study

Ultra-thin HDI

- Two layer HDI testdesign (top)
- Prototype from LTU .
- Single point tape automated bonding

	\geq	_		/		<
at k	layers				_	 _
	-	È	-			
		7				
ngt	fibres	/	_	_		
		Oute	r pixel lag	1975		
		Oute	r pixel lag	rers		

Ultra-thin HDI

 Two layer HDI test design (top)

Al 14 µm	Material	Thickness [µm]	X/X0
PI 10 μm	upper Al layer	14	$1.57 \cdot 10^{-4}$
Glue 5 µm	isolator (PI)	35	$1.22 \cdot 10^{-4}$
PI 25 µm	glue	10	$0.25 \cdot 10^{-4}$
	lower Al layer	14	$1.57 \cdot 10^{-4}$
Al 14 μm	lower PI shield	10	$0.35 \cdot 10^{-4}$
PI 10 μm	total	83	$< 5 \cdot 10^{-4}$

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- N-well in p-substrate
- Reversely biased

See talk: "Characterisation of novel prototypes of monolithic HV-CMOS pixel detectors for high energy physics experiments", Dr. Stefano Terzo on Friday

by Ivan Perić

I. Perić, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- N-well in p-substrate
- Reversely biased ~85V
 - Depletion layer
 - Charge collection via drift
 - ➤ Fast <1 ns charge collection</p>
 - Thinning to 50 µm possible
- Integrated readout electronics

by Ivan Perić

I. Perić, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

Full System on Chip

- 180 nm HV-CMOS
- Pixel matrix:
 - 40 x 32 pixels
 103 x 80 µm² each
- Analog part

 Temperature tolerant
- Digital part

 Full system on chip

Chip Readout

On Chip:

- Zero suppression
- Read-out state machine
- PLL and VCO
- Fast serializer
- 1.25 Gbit/s LVDS output

Eye diagram MuPix7; eye height > 130mV, eye width > 0.65 UI

Spatial Resolution

- Pixel size 80 µm x 103 µm
- Measured track residuals:
 - \circ RMS x = 38.1 ± 0.1 µm
 - \circ RMS y = 30.6 ± 0.1 µm

X-talk

- MuPix7
- PSI October 2015

 250 MeV e⁺/µ⁺/pion
- X-talk between
 - o **Rows**
 - o Around 10%

X-talk

Crosstalk Prob

- MuPix7
- PSI October 2015

 250 MeV e⁺/µ⁺/pion
- X-talk between
 o Rows
- Capacitive coupling
 - Line from diode to comparator
 - Strongly depends on layout

X-talk to both sides

Efficiencies

>99.5% efficiency

- 4 GeV electrons@DESY
- 90° impact angle
- Individual pixel thresholds

MuPix7 Efficiency

Efficiencies rotated Sensor

>99.8% efficiency

- 4 GeV electrons@DESY
- 30° impact angle
- Individual pixel thresholds

MuPix7 under angle

MuPix7 Efficiency

Time Stamps

- Time difference of hits registered in MuPix 7 and scintillator
- 4 GeV electrons
- Sampling rate is 62.5 MHz
- $\sigma = 14.3 \text{ ns}$

Time Resolution of Pixels

Large Pixel Prototype

- 10.8 x 20 mm²
- Time walk correction
- 3+1 LVDS outputs
- In production
- Module studies

Summary

- Mu3e searches for lepton flavor violation $\circ > 10^{15} \mu$ -decays \rightarrow BR O(10⁻¹⁵)(90% CL)
- Two SiPM based timing systems
- Silicon tracker with ~182M pixel
 HV-MAPS 50 µm thin
- Prototypes exceed requirements

Outlook: Projected Sensitivity

Single event sensitivity (SES) and the corresponding 90% and 95% C.L. upper limits versus data taking days for the Mu3e detector

Institutes

Mu3e-collaboration:

DPNC Geneva University

- Paul Scherrer Institute
- Particle Physics ETH Zürich
- Physics Institute Heidelberg University
- Institute for Nuclear Physics Mainz University
- o IPE Karlsruhe
- KIP Heidelberg

KIRCHHOFF-INSTITUT FÜR PHYSIK

PAUL SCHERRER INSTITUT

1 - 1 -

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dirk Wiedner, Mu3e

Acknowledgements

- The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)
- We owe our SPS test-beam time to the SPS team and our LHCb colleagues, especially Heinrich, Kazu and Martin.
- We would like to thank PSI for valuable test beams!
- We thank the Institut für Kernphysik at the Johannes Gutenberg University Mainz for giving us the opportunity to take data at the MAMI beam.

Backup Slides

28.02.2017 • 35

Motivation Backup

28.02.2017 • 36

The Mu3e Signal

- $\mu^+ \rightarrow e^+ e^- e^+$ rare in SM
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions

Tree level

Mae

$$L_{LFV} = \left[\frac{m_{\mu}}{(\kappa+1)\Lambda^2} \overline{\mu_R} \sigma^{\mu\nu} e_L F_{\mu\nu}\right]_{\gamma-\text{penguin}} + \left[\frac{\kappa}{(\kappa+1)\Lambda^2} (\overline{\mu_L} \gamma^{\mu} e_L) (\overline{e_L} \gamma_{\mu} e_L)\right]_{\text{tree}}$$

A. de Gouvêa, "(Charged) Lepton Flavor Violation", Nucl. Phys B. (Proc. Suppl.), 188 303–308, 2009.

Challenges

Challenges

- High rates: $10^8 \,\mu/s$
- Good timing resolution: 100 ps
- Good vertex resolution: ~200 µm
- Excellent momentum resolution: ~ 0.5 MeV/ c^2
- Extremely low material budget:
 - > $1 \times 10^{-3} X_0$ (Si-Tracker Layer)
- HV-MAPS spectrometer
 - \succ 50 μ m thin sensors
 - ➤ B ~1 T field
- + Timing detectors

SciFi Backup

• Dirk Wiedner, Mu3e

Horizontal gap between fibers ~ 4 µm

Dirk Wiedner, Mu3e

Si-PMs (MPPCs) at both fiber ends

SciFi column readout with Si-PM arrays

LHCb type detector

- 64 channel monolithic device (custom design)
- ~250 µm effective "pitch"
- 50 µm × 50 µm pixels
- Grouped in 0.25 mm × 1 mm vertical columns
- Common bias voltage

Si-PMs (MPPCs) at both fiber ends

SciFi column readout with Si-PM arrays

LHCb type detector

 \bigcirc Reduced # of readout channels (2 × 64)

- Easy, direct coupling
- Higher occupancy
- ☺ "Optical" cross talk

Readout Electronics

- Mutrig ASIC (KIP)
- Fulfills SciFi requirements
 - Compact design
 - Installation very close to Si-PM arrays
 - o 32 channels
 - 4 chips / Si-PM array
 - Assuming MuTRiG can sustain ~10 MHz hitrate
- Performance to be tested

 In particular for low photon yield

STiC

Alternative Design with Square Fibers

2-3 layers of 250 μm square double cladding scint. fibers128 fibers/layer

Single fiber Al coating (minimum "optical" cross-talk)

Testing Square Fibers

250 µm square fiber

timing performance

Cross talk:

By sputtering 30 nm Al coating on the fiber cross talk < 1% was achieved

0.5 Nphe threshold $\sigma = 750 \pm 17 \text{ ps}$

Tile Detector Backup

Efficiency

- Require hit in first & last column
- Look for hit in middle
 channel
- Efficiency > 99.5%

Tile Detector

- Scintillating tiles
 - 6.5 x 6.5 x 5.0 mm³
- 7 Tile Modules per station
 - o 448 tiles/module
 - Attached to end rings
- SiPMs attached to tiles
 - Distribution PCBs below
 - Readout through MuTRiG

Tile detector 4 x 4 prototype

STiC Readout

- Developed at KIP for EndoTOFPET-US
 Optimized for ToF applications
- Key features:
 - Digital timing & energy information

- o 64 channels (version 3.0)
- o 50 ps TDC bins
- SiPM bias tuning
- SiPM tail cancelation possibility (version 3.0)
- Currently ≈ 1 MHz hit rate / chip
- Up to \approx 20 MHz in future version
- Version 2.0 successfully operated in test-beam

STiC 3.0

STiC Readout

- Developed at KIP for EndoTOFPET-US
 Optimized for ToF applications
- Key features:
 - Digital timing & energy information

- o 64 channels (version 3.0)
- o 50 ps TDC bins
- SiPM bias tuning
- SiPM tail cancelation possibility (version 3.0)
- Currently ≈ 1 MHz hit rate / chip
- \circ Up to ≈ 20 MHz in future version
- Version 2.0 successfully operated in test-beam

STiC 3.0

STiC Test Beam

STiC Test Beam

Dirk Wiedner, Mu3e

STiC Test Beam

HV-MAPS Backup

Prototype Overview

Prototype	Active Area	Functionality	Bugs	Improvements
MuPix1	1.77 mm ²	Sensor + analog	Comparator "ringing"	First MuPix prototype
MuPix2	1.77 mm ²	Sensor + analog	Temperature dependence	No ringing
MuPix3	9.42 mm ²	Sensor, analog, dig.	bad pixel on/off ,	First part of dig. readout
MuPix4	9,42 mm ²	Sensor, analog, dig.	Zero time-stamp and row address for 50% of pixels	Working digital readout, timestamp , temperature stable
MuPix6	10.55 mm ²	Sensor, analog, dig.	?	Removed zero time-stamp and address bug
MuPix7	10.55 mm ²	System on Chip	X-talk	Fast serial readout

Sensor + Analog + Digital

Thinned Sensors

- Prototypes thinned:
 MuPix7 thinned to 50, 62, 75µm
- Good performance of thin chips
 - o In lab
 - In particle beam

MuPix4 thinned to 50µm

Setup March 2016 Test-Beam @ DESY

- Beam-line TB22
 o up to 5 GeV electrons
- Aconite telescope
- MuPix7 prototype
- Readout setup from PI Heidelberg

MuPix7 @ DESY test-beam in EUDET telescope

Sub-Pixel Efficiencies

- Hit efficiency map and projections for 2×2 pixel array
- 4 GeV electrons
- Bias voltage -40V to enhance the inefficient regions

Temperature Dependence

- Pulse shape vs temperature
 - Injection pulse to pixel discriminator output
- Climate chamber

 0°C, 20°C, 40°C, 60°C
- Significant change to
 Pulse shape
 Signal amplitude
- Slight change to time resolution
 - Re-calibration

MUPIX7 High bias currents (1W/cm²) HV -85V

Temperature Dependence

- Pulse shape vs temperature
 - Injection pulse to pixel discriminator output
- Climate chamber

 0°C, 20°C, 40°C, 60°C
- Significant change to
 - Pulse shape
 - Signal amplitude
- Slight change to time resolution
 - ➢ Re-calibration

Mechanics Backup

- Conical target
- Inner double layer
 8 and 10 sides of 2 x 12 cm²
- Outer double layer
 24 and 28 sides of 2 x 36 cm²
- Re-curl layers
 - 24 and 28 sides of 2x 36 cm²
 Both sides

Recurl pixel layers

Scintillator tiles

Inner pixel layers

Target

Scintillar, ng fibres

Outer pixel layers

μ Beam

- Conical target
- Inner double layer

 8 and 10 sides of 2 x 12 cm²
- Outer double layer
 24 and 28 sides of 2 x 36 cm²
- Re-curl layers
 - 24 and 28 sides of 2x 36 cm²
 Both sides

Recurl pixel layers

Scintillator tiles

Inner pixel layers

Target

Scintillating fibres

Outer pixel layers

μ Beam

- Conical target
- Inner double layer

 8 and 10 sides of 2 x 12 cm²
- Outer double layer
 24 and 28 sides of 2 x 36 cm²
- Re-curl layers
 - 24 and 28 sides of 2x 36 cm²
 Both sides

Recurl pixel layers

Scintillator tiles

Inner pixel layers

Target

Scintillating fibres

μ Beam

- Conical target
- Inner double layer

 8 and 10 sides of 2 x 12 cm²
- Outer double layer
 24 and 28 sides of 2 x 36 cm²
- Re-curl layers
 - \circ 24 and 28 sides of 2 x 36 cm²
 - Both sides

108 inner sensors 2736 outer sensors ~180 000 000 pixel

Outer pixel layers

Sandwich Design

• HV-MAPS

o Thinned to 50 µm
o Sensors 2 x 2 cm²

Kapton[™] flex print
 25 µm Kapton[™]
 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

0.11% of X₀

Thinned Pixel Sensors

HV-MAPS*

- Thinned to 50 µm
 Sensors 2 x 2 cm²
- Kapton[™] flex print
 25 µm Kapton[™]
 14 µm Alu traces
- KaptonTM Frame Modules
 25 µm foil
 Self supporting
- Alu end wheels
 Support for all detectors

MuPix3 thinned to $< 90 \mu m$

KaptonTM Flex Print

• HV-MAPS

 $_{
m O}$ Thinned to 50 μm

 \circ Sensors 2 x 2 cm²

Kapton[™] flex print

- o 25 µm Kapton™
- o 14 µm Alu traces

Kapton[™] Frame Modules o 25 µm foil o Self supporting

Alu end wheels

 Support for all detectors

Laser-cut flex print prototype

Pixel Modules

• HV-MAPS

 $_{
m O}$ Thinned to 50 μm

- \circ Sensors 2 x 2 cm²
- Kapton[™] flex print
 25 µm Kapton[™]
 14 µm Alu traces

Kapton[™] Frame Modules

- \circ 25 μ m foil
- Self supporting
- Alu end wheels

 Support for all detectors

CAD of KaptonTM frames

Overall Design

• HV-MAPS

 $_{
m O}$ Thinned to 50 μm

- \circ Sensors 2 x 2 cm²
- Kapton[™] flex print
 - o 25 µm Kapton™
 - o 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

- Two halves for layers 1+2
- 6 modules in layer 3
- 7 modules in layer 4

CAD of Kapton[™] frames

Inner Layers

• HV-MAPS

 $_{
m o}$ Thinned to 50 μm

 \circ Sensors 2 x 2 cm²

Kapton[™] flex print 25 µm Kapton[™]

o 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

Rendering of vertex detector CAD

Outer Module

- HV-MAPS
 - $_{
 m O}$ Thinned to 50 μm
 - \circ Sensors 2 x 2 cm²
- Kapton[™] flex print
 25 µm Kapton[™]
 - o 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

Layer 3 Prototype in Assembling Frame with 50 µm Glass

Detector Frame

• HV-MAPS

 $_{
m o}$ Thinned to 50 μm

- \circ Sensors 2 x 2 cm²
- Kapton[™] flex print
 25 µm Kapton[™]
 - o 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels
 - Support for all detectors

Pixel detector CAD rendering

Thinning

5

nOvati

- 50 µm Si-wafers
 - Commercially available
 - HV-CMOS 50 μm (AMS)
 - o 50 µm for MuPix4 and MuPix7

Cooling Backup

Liquid Cooling

- Beam pipe cooling
 - With cooling liquid
 - o 5°C temperature
 - Significant flow possible
- For electronics
 - o FPGAs
 - Power regulators
 - Mounted to cooling plates
- Total power several kW

He Cooling

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Distribution in Frame
 - Local flow: V-shapes
 - Gap flow: Outer surface

Simulation

He cooling 400mW/cm²

Test Results

- 1:1 Prototype
 - Layer 3+4 of silicon tracker
 Ohmic heating 400mW/cm²
- Cooling He
 at several m/s
- Temperature sensors attached to foil

 LabVIEW readout
- Results promising
 - ΔT < 60°K</p>
 - > No sign of vibration in air

He Cooling 750 mW/cm²

DAQ Backup

Front End FPGAs

- FPGAs on detector (?)
 112 pieces
- Receive sensor data

 36-45 LVDS inputs
- 6.4 Gbit/s outputs

 8 optical links
 ... to counting house

Readout Board

Readout Board

Dirk Wiedner, Mu3e

• Front end links

- Pixel sensor to on-detector FPGA
 - 1250 Mbit/s
 - LVDS
- Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - o ... to readout boards
 - o 6.4 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - o ...to PC Farm

Dirk Wiedner, Mu3e

• Front end links

- Pixel sensor to on-detector FPGA
 - 1250 Mbit/s
 - LVDS
- Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - ... to readout boards
 - 6.4 Gbit/s
- Optical links in counting room
 - Off-detector read out boards...to PC Farm

• Front end links

- Pixel sensor to on-detector FPGA
 - 1250 Mbit/s
 - LVDS
- Timing detector readout

Optical links from detector

- Front end FPGAs
- o ... to readout boards
- o 6.4 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - o ...to PC Farm

GPU-PC

- PC with GPU
- 10 Gbit/s Fiber input
 8 inputs from sub-detectors
- Data filtering
 - o Timing Filter on FPGAo Track filter on GPU
 - Data to tape < 100 MB/s

GPU computer

GPU-PC

- PC with GPU
- 10 Gbit/s Fiber input

 8 inputs from sub-detectors
- Data filtering
 - Timing Filter on FPGA
 - Track filter on GPU
 - Data to tape < 100 MB/s

Optical mezzanine connectors

GPU computer

Timing Filter

- Tile and Fiber data

 Easy to match
 - Look for three tracks
- Reject data without three hits
 - o ... inside time interval

Under

discussion

Timing Filter

- Tile and Fiber data

 Easy to match
 - Look for three tracks
- Reject data without three hits
 - o ... inside time interval

Under

discussion

Vertex Filter

- Entire event on GPU
- Large target
 - Large spread of muons
 - Easy vertex separation
- Reject data without three tracks
 - ... inside area interval on target

 e^+

e

Vertex Filter

- Entire event on GPU
- Large target
 - Large spread of muons
 - Easy vertex separation
- Reject data without three tracks
 - ... inside area interval on target

e

Readout system

- Pixel detector
 - HV-MAPS (MuPix)
 - ✓ Sensor and read-out chip in one
 - ✓ Deliver zerosuppressed serialized data
- Timing detectors

 SiPMs plus MuTRiG TDC
 Deliver zero
 - suppressed serialized data
- Common read-out
 system

Common read-out PCB

✓ Front-end PCB

- Common for pixel, fibre and tile detector
- ✓ Data acquisition
- ✓ Clock distribution
- ✓ Slow control distribution

Prototype functional

- Improved version for Q3/2017
- Next: Vertical slice test:
 - All electronics from (pixel) module to PC

