

Dirk Wiedner, Heidelberg On Behalf of the Mu3e Collaboration 22nd October 2014

Overview

- Physics Motivation
- Mu3e Experiment
- Timing detectors
- HV-MAPS
- Summary

Physics Motivation

Lepton flavor violation?

Standard model:

No lepton flavor violation

Physics Motivation

Lepton flavor violation?

Standard model:

• No lepton flavor violation

Physics Motivation

Lepton flavor violation: $\mu^+ \rightarrow e^+e^-e^+$

Standard model:

- No lepton flavor violation, but:
 - Neutrino mixing
 - Branching ratio $<10^{-54}$ → unobservable

The Mu3e Signal

- $\mu^+ \rightarrow e^+ e^- e^+$ rare in SM
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions

Tree level

The Mu3e Signal

- $\mu^+ \rightarrow e^+ e^- e^+$ rare in SM
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions

- ➤ Rare decay (BR<10⁻¹², SINDRUM)
- For BR O(10⁻¹⁶)
 - > >10¹⁶ muon decays
 - High decay rates O(10⁹ muon/s)

 e^+

The Mu3e Signal

e

→Maximum electron energy 53 MeV

Dirk Wiedner, Mu3e collaboration

22/10/2014 • 8

e+

The Mu3e Background

Combinatorial background

 µ⁺→e⁺vv & µ⁺→e⁺vv & e⁺e⁻
 o many possible combinations

- Good time and
- Good vertex resolution required

The Mu3e Background

μ⁺→e⁺e⁻e⁺∨∨

Missing energy (v)

Good momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

The Mu3e Background

- μ⁺→e⁺e⁻e⁺∨∨
 - Missing energy (v)
 - Good momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

Challenges

Challenges

- High rates
- Good timing resolution
- Good vertex resolution
- Excellent momentum resolution
- Extremely low material budget

Challenges

- High rates: $10^{9} \mu/s$
- Good timing resolution: 100 ps
- Good vertex resolution: ~200 µm
- Excellent momentum resolution: ~ 0.5 MeV/c²
- Extremely low material budget:
 - > $1 \times 10^{-3} X_0$ (Si-Tracker Layer)
- HV-MAPS spectrometer
 - \succ 50 µm thin sensors
 - ➤ B ~1 T field
- + Timing detectors

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

PSI µ-Beam

Paul Scherrer Institute Switzerland:

- 2.2 mA of 590 MeV/c protons
- Phase I:
 - Surface muons from target E
 - \circ Up to a ~10⁸ µ/s
- Phase II:
 - New beam line at the neutron source:
 - High intensity Muon Beam
 - Several 10⁹ μ/s possible
 - > >10¹⁶ muon decays per year
 - ➢ BR 10⁻¹⁶ (90% CL)

Timing Detectors

- Fiber detector
 - Before outer pixel layers
 - o 250 µm scintillating fibers
 - o SiPMs
 - $\circ \leq 1$ ns resolution
- Tile detector
 - After recurl pixel layers
 - \circ 8.5 x 7.5 x 5 mm³
 - o SiPMs
 - $\circ \leq 100 \text{ ps resolution}$

Fiber Detector

- Fiber ribbon modules
 - o 16 mm wide
 - o 360 mm long
 - 3 or 4 layers fibers of 250 µm dia.
 - 6 STiC readout chips

Scintillating fiber ribbons

Fiber Detector

- Total fiber detector:
 - o 24 ribbon-modules
 - o 144 read-out chips
 - o 4536 fibers

Scintillating fiber ribbons

Fiber Detector

- Prototype ribbons built:
 - o 3 and 4 layers
 - o 16 mm wide
 - o 360 mm long
- CAD in progress

Scintillating fiber ribbons

horizontal gap between fibers ~ 4 µm

Dirk Wiedner, Mu3e collaboration

- Time resolution does not show 1 / \sqrt{n} behavior:
- \Rightarrow improve on timing algorithm!
- Si-PM transit time spread ~100 ps has almost no effect
- Real issue: time in all ~9k channels to few 100 ps

Tile Detector

- Scintillating tiles

 8.5 x 7.5 x 5 mm³
- 12 Tile Modules per station
 - o 192 tiles/module
 - Attached to end rings
- SiPMs attached to tiles
 Front end PCBs below
 Readout through STiC

Sketch of Tile detector station

Tile Detector

- Scintillating tiles

 8.5 x 7.5 x 5 mm³
- 12 Tile Modules per station
 - o 192 tiles/moduleo Attached to end rings
- SiPMs attached to tiles

 Front end PCBs below
 - Readout through STiC

CAD of Tile Detector integration

Time Resolution

- Coincidence between 2 tiles in a row
- Time resolution ≈ 70 ps
- Time-walk effect $\approx 5\%$ (4 ps)
- Only small dependence on chip settings

Efficiency

- Require hit in first & last column
- Look for hit in middle channel
- Efficiency > 99.5%
- Bad time values for ≈ 40% of hits
 o Known bug in STiC 2.0
 - Will be fixed in STiC 3.0

Pixel Sensors

• • •

• Dirk Wiedner, Mu3e collaboration

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- Pixel sensors
- HV-CMOS technology
- N-well in p-substrate
- Reversely biased

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- Pixel sensors
- HV-CMOS technology
- N-well in p-substrate
- Reversely biased ~60V
 - Depletion layer
 - Charge collection via drift
 - Fast <1 ns charge collection</p>
 - $_{\circ}$ Thinning to < 50 μ m possible

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- Pixel sensors
- HV-CMOS technology
- N-well in p-substrate
- Reversely biased ~60V
 - Depletion layer
 - Charge collection via drift
 - Fast <1 ns charge collection</p>
 - \circ Thinning to < 50 μ m possible
- Integrated readout electronics

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

Chip Prototypes MuPix4

- 180 nm HV-CMOS
- Pixel matrix:
 - o 40 x 32 pixels
 o 92 x 80 µm² each
- Ivan Perić ZITI
 - Analog part
 - Small pixel capacitance
 - Temperature tolerant
 - Digital part
 - Mostly ready

Chip Prototypes MuPix6

- 180 nm HV-CMOS
 - Pixel matrix:
 40 x 32 pixels
- 103 x 80 µm² each
 Ivan Perić ZITI
 - Analog part
 - Small pixel capacitance
 - Temperature tolerant
 - Digital part
 - Mostly ready

HV-MAPS Test Results

 \bullet \bullet \bullet

22/10/2014 • 41

Thinned Sensors

- Single dies thinned:
 - MuPix2 thinned to < 80µm
 MuPix3 thinned to < 90µm
 MuPix4 thinned to 50µm
- Good performance of thin chips
 - o In lab
 - In particle beam

MuPix3 thinned < 90µm

Thinned Sensors

- Single dies thinned:
 - MuPix2 thinned to < 80µm
 MuPix3 thinned to < 90µm
 MuPix4 thinned to 50µm
- Good performance of thin chips
 - o In lab
 - In particle beam

MuPix4 thinned to 50µm

Thinned Sensors

- Single dies thinned:

 MuPix2 thinned to < 80µm
 MuPix3 thinned to < 90µm
 MuPix4 thinned to 50µm
- Good performance of thin chips
 - o In lab
 - In particle beam
- Similar Time over Threshold (ToT)
 - PSI test-beam
 - PiM1 beam-line
 - 193 MeV π⁺

Temperature Dependence

Mag

- MuPix4 prototype
- Latency measurement

 LED pulse to...
 Pixel discriminator output
- Setup in Oven

 Temperature between 23°C and 70°C

Very little temperature dependence

- ➤ O(10ns) in latency
- Within resolution of setup

Signal to Noise

- MuPix4 prototype
- Signal
 - o Test-pulse
 - Calibrated to ⁹⁰Sr source
 - At 70°C in oven
 - HV = -70V
- Noise
 - Taken from S-curve
 - Error function fit
 - X-checked with
 - Threshold scan
 - Close to baseline
- ≻ S/N = 36.8

Test beams

- Eight test beam campaigns in 2013-14:
 - March DESY
 - o June DESY
 - September PSI
 - October DESY
 - February '14 DESY
 - o June PSI
 - o July PSI
 - October PSI

Setup February Test-Beam

- DESY, February 2014
- Beam-line T22
 o up to 6 GeV electrons
- Aconite telescope
- MuPix4 prototype
- Readout setup from Ivan Perić

Spatial Resolution

- Pixel size 80 µm x 92 µm
- Measured track residuals:
 - o RMS x = 28 μm
 - o RMS y = 29 μm

Pixel Residuals

Efficiencies

>99.5% efficiency

- o 5 GeV electrons
- o 45° angle
- Individual pixel thresholds
 - Threshold tune from pixel efficiencies in previous test beam

MuPix4 Efficiency

Threshold Scans for 0° to 45°

Sub-Pixel Efficiencies

- Chip folded back to 4 x 4 pixel area
- Resolution limited
- Overall high efficiency
- No pixel substructure (within resolution)

Time Stamps

- MuPix4 prototype
- External grey counter
 o At 100 MHz
- Time stamp recorded by MuPix4 sensor

 For each pixel

Time resolution O(17 ns)

 Non-negligible setup contribution

Time Resolution of Pixels

Summary

- Mu3e searches for lepton flavor violation
- > 10¹⁶ μ -decays \rightarrow BR < 10⁻¹⁶ (90% CL)
- Two SiPM based timing systems
- Silicon tracker with ~275M pixel
- HV-MAPS 50 µm thin
- Prototypes look encouraging

Outlook: Projected Sensitivity

Institutes

- Mu3e-collaboration:
 - DPNC Geneva University
 - Paul Scherrer Institute
 - o Particle Physics ETH Zürich
 - Physics Institute Zürich University
 Physics Institute Zürich University
 - Physics Institute Heidelberg University
 - o Institute for Nuclear Physics Mainz University
- JG

o IPE Karlsruhe

KIP Heidelberg

DE GENEVE

Eidgenössische Technische Hochschule Zürich

Universität

Backup Slides

22/10/2014 • 57

Motivation Backup

$$\begin{split} L_{LFV} &= \left[\frac{m_{\mu}}{(\kappa+1)\Lambda^2} \ \overline{\mu_R} \sigma^{\mu\nu} e_L F_{\mu\nu} \right]_{\gamma-\text{penguin}} \\ &+ \left[\frac{\kappa}{(\kappa+1)\Lambda^2} \ (\overline{\mu_L} \gamma^{\mu} e_L) \ (\overline{e_L} \gamma_{\mu} e_L) \right]_{\text{tree}} \end{split}$$

A. de Gouvêa, "(Charged) Lepton Flavor Violation", Nucl. Phys B. (Proc. Suppl.), 188 303–308, 2009.

Momentum Resolution

- Multiple scattering only
- Current design:
 - o 50 µm silicon
 - o 50 µm Kapton
 - Helium gas cooling
 - 3 layer fiber detector

SciFi Backup

Dirk Wiedner, Mu3e collaboration

22/10/2014 • 62

Readout of Fibers

Si-PMs (MPPCs) at both fiber ends

SciFi column readout with Si-PM arrays

LHCb type detector

- 64 channel monolithic device (custom design)
- ~250 micron effective "pitch"
- 50 μm × 50 μm pixels
- Grouped in 0.25 mm × 1 mm vertical columns
- Common bias voltage

Readout of Fibers

Si-PMs (MPPCs) at both fiber ends

SciFi column readout with Si-PM arrays

LHCb type detector

 \odot Reduced # of readout channels (2 × 64)

- Easy, direct coupling
- Higher occupancy
- ☺ "Optical" cross talk

22/10/2014 • 65

Monolithic device

- Custom design ongoing with Hamamatsu
- 6 × 32 independent readout cells
- 50 μm × 50 μm pixels grouped in
- 0.4 mm × 0.4 mm cells with 0.1 mm spacing
- Common bias for each cell (~0.5 V)

Example of Hamamatsu Si-PM array S12642-0404 sensor 4×4 ch. (3 × 3 mm²)

- © Lowest possible occupancy
- O No "optical" cross talk
- © Less dark rate
- © Can also be used for tracking?
- \odot Increased # of readout channels (2 × 192)
- ⊗ Few photons / fiber (cell)

Example of Hamamatsu Si-PM array S12642-0404 sensor 4×4 ch. (3×3 mm²)

Single Fiber Readout

Fibers glued with photo-device geometry 500 µm center to center

Si-PM array directly coupled to fibers

Estimated rate ~ 200 kHz for 2016 run

"fan-out" between straight section and socket

Alternative: LHCb type detector

22/10/2014 • 68

Readout Electronics

- STIC ASIC (KIP)
- Fulfills SciFi requirements
 - Compact design
 - Installation very close to Si-PM arrays
 - o 64 channels
 - 6 chips / Si-PM array
 - Assuming STIC can sustain ~10 MHz hit-rate
- Performance to be tested
 In particular for low photon yield

Small efficiency drop for source far from Si-PM

Vs. photons in opposite detector

Detection efficiency of Si-PM1 increases With # photons in Si-PM2

t.b.d. with 360 mm ribbons

Calibration

Calibrate in situ:

Alignment, energy (thresholds), timing

Energy:

Use ADC spectra Distance between peaks \rightarrow Amplification Set discriminator thresholds (> n γ)

Timing:

- use the decay $\mu^{\scriptscriptstyle +} \,{\rightarrow}\, e^{\scriptscriptstyle +}\, e^{\scriptscriptstyle -}\, e^{\scriptscriptstyle +}\, \nu\, \nu$
- 3 prongs produced at the same time
- For $10^7 \mu$ decays / s in one day
- 10⁷ decays assuming 33% eff.

Dirk Wiedner, Mu3e collaboration

of fibers hit by a particle crossing the SciFi array (simulation) as a function of detected photons at each fiber end (assume 25% P. D. E. in simulations)

"Triggering"

Test Set-Up

Tests with collimated β source (Sr) β electrons cross the ribbon at 90^o

Complete the studies by testing prototypes in a beam → February DESY Test Beam

Dirk Wiedner, Mu3e collaboration

8 mm wide 200 mm long 3 layer SciFI ribbon

Readout with $3 \times 3 \text{ mm}^2 \text{ Si-PMs}$ Si-PMs glued on SciFi ribbon

Trigger scintillator:

- 6 × 6 mm² square bar
- Readout with same Si-PMs

Timing

- Time difference <u>∆t</u> between Si-PM1 and Si-PM2
 - Rise-time compensated discriminators

different colors : different # of detected photons (see next slides)

Time resolution σ of each Si-PM : $\Delta t / \sqrt{2}$ Time resolution of Mean Time : $\sigma_{MT} = \sigma / \sqrt{2} = \Delta t / 2$ For same σ , i.e. similar # of detected photons on each side Mean time does not depend on impact position

DRS5-Chip Readout

- Developed at PSI successor to DRS4
- Currently in development
- Key features:
 - Sampling speed up to 10 GSPS
 - \circ Bandwidth > 3 GHz
 - 8 (16?) channels
 - Dead-time less readout mode
 - Up to 5 MHz hit rate
- DRS4 successfully operated in test-beam

Alternative

To STiC

Alternative Design with Square Fibers

2 staggered layers of 500 μm square double cladding scint. fibers from Saint Gobain BCF12: λ_{peak} ~435nm, τ_{decay}~3.2ns, L_{att} ~ 2.7 m / BCF20: λ_{peak} ~492nm, τ_{decay}~2.7ns, L_{att} > 3.5 m
 32 fibers/layer

OR 250 µm square double cladding scint. fibers

Single fiber Al coating (minimum / negligible "optical" cross-talk)

To reduce thickness and occupancy thinner fibers would be required

16 mm

Testing Square Fibers

Fiber test setup developed at PSI

500 μm square fiber

 β source

Cross talk:

By sputtering 30 nm Al coating on the fiber cross talk < 1% was achieved

Conclusions SciFi

- Timing requirements (resolution < 1 ns) fulfilled
 - in lab with β source (resolution < 500 ps)
- Good agreement between simulations and measurements
 - light propagation
- Further characterizations ongoing or planned
 - β source and beam:
 - test of single fiber readout with commercially available Si-PMs
 - cross talk between fibers
 - rate capabilities
 - readout electronics
- Further studies under way to optimize construction of detector
- About 6 months to complete detector studies
- \rightarrow 6 more months to finalize design
- \rightarrow construction of detector about 6 months

Tile Detector Backup

Tile Detector

- Scintillating tiles

 8.5 x 7.5 x 5 mm³
- 12 Tile Modules per station
 - o 192 tiles/moduleo Attached to end rings
- SiPMs attached to tiles

 Front end PCBs below
 - Readout through STiC

Tile detector 4 x 4 prototype

STiC Readout

- Developed at KIP for EndoTOFPET-US

 Optimized for ToF applications
- Key features:
 - Digital timing & energy information

- o 64 channels (version 3.0)
- o 50 ps TDC bins
- SiPM bias tuning
- SiPM tail cancelation possibility (version 3.0)
- Currently ≈ 1 MHz hit rate / chip
- \circ Up to ≈ 20 MHz in future version

Version 2.0 successfully operated in test-beam

STiC 2.0

STiC 3.0

STiC Readout

- Developed at KIP for EndoTOFPET-US

 Optimized for ToF applications
- Key features:
 - Digital timing & energy information

- o 64 channels (version 3.0)
- o 50 ps TDC bins
- SiPM bias tuning
- SiPM tail cancelation possibility (version 3.0)
- Currently ≈ 1 MHz hit rate / chip
- \circ Up to ≈ 20 MHz in future version
- Version 2.0 successfully operated in test-beam

STiC 2.0

STiC 3.0

STiC Test Beam

STiC Test Beam

STiC Test Beam

HV-MAPS Backup

Chip Prototypes MuPix3

- 180 nm HV-CMOS
- Pixel matrix:
 40 x 32 pixels
 - \circ 92 x 80 μ m² each
- Ivan Perić ZITI
 - Analog part almost final
 - Digital part under development
 - Bug in pixel on/off

Chip Prototypes MuPix3

- 180 nm HV-CMOS
- Pixel matrix:
 - 40 x 32 pixels
 92 x 80 µm² each
- Ivan Perić ZITI
 - Analog part almost final
 - Digital part under development
 - Bug in pixel on/off

Prototype Overview

Prototype	Active Area	Functionality	Bugs	Improvements
MuPix1	1.77 mm ²	Sensor + analog	Comparator "ringing"	First MuPix prototype
MuPix2	1.77 mm ²	Sensor + analog	Temperature dependence	No ringing
MuPix3	9.42 mm ²	Sensor, analog, dig.	bad pixel on/off ,	First part of dig . readout
MuPix4	9,42 mm ²	Sensor, analog, dig.	Zero time- stamp and row address for 50% of pixels	First working digital readout, first timestamp , temperature stable
MuPix6	10.55 mm ²	Sensor, analog, dig.	?	Removed zero time-stamp and address bug

Dirk Wiedner, Mu3e collaboration

22/10/2014 • 91

Sensor + Analog + Digital

Sensor + Analog + Digital

Digital Readout Feature

- Artifact from readout protocol:
 - Pixel RAM-cells reset before readout
 - Bug effects only row address and time stamp
 - ➤ 50% of pixels effected
 - Pixel efficiency also good for affected rows

Digital Readout Feature

- Artifact from readout protocol:
 - Pixel RAM-cells reset before readout
 - Bug effects only row address and time stamp
 - ➤ 50% of pixels effected
 - Pixel efficiency also good for affected rows

> Bug fixed for MuPix6

Hitmap for MuPix6

Mechanics Backup

- Conical target
- Inner double layer
 12 and 18 sides of 1 x 12 cm
- Outer double layer
 24 and 28 sides of 2 x 36 cm
- Re-curl layers
 - o 24 and 28 sides of 2x 72 cm
 o Both sides (x2)

Recurl pixel layers
Scintillator tiles
Inner pixel layers
Target
Scintillator fibres
Outer pixel layers

- Conical target
- Inner double layer

 12 and 18 sides of 1 x 12 cm
- Outer double layer
- Re-curl layers
 - 24 and 28 sides of 2x 72 cm
 Both sides (x2)

Recurl pixel layers

Scintillator tiles

Inner pixel layers

Target

Scintillating fibres

Outer pixel layers

µ Beam

- Conical target
- Inner double layer

 12 and 18 sides of 1 x 12 cm
- Outer double layer
 24 and 28 sides of 2 x 36 cm
- Re-curl layers
 - 24 and 28 sides of 2x 72 cm
 Both sides (x2)

Sandwich Design

• HV-MAPS

Thinned to 50 µm
Sensors 1 x 2 cm² or 2 x 2 cm²

- Kapton[™] flex print
 25 µm Kapton[™]
 - o 12.5 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting

Alu end wheels Support for all detectors

<0.1% of X₀

Thinned Pixel Sensors

HV-MAPS*

- $_{\odot}$ Thinned to 50 μm
- \circ Sensors 1 x 2 cm² or 2 x 2 cm²
- Kapton[™] flex print
 25 µm Kapton[™]
 - o 12.5 µm Alu traces
- KaptonTM Frame Modules
 25 µm foil
 Self supporting
- Alu end wheels

 Support for all detectors

MuPix3 thinned to $< 90 \mu m$

KaptonTM Flex Print

• HV-MAPS

 $_{
m o}$ Thinned to 50 μm

 \circ Sensors 1 x 2 cm² or 2 x 2 cm²

Kapton[™] flex print

- o 25 µm Kapton™
- o 12.5 µm Alu traces
- Kapton[™] Frame Modules
 o 25 µm foil
 o Self supporting
- Alu end wheels

 Support for all detectors

Laser-cut flex print prototype

Pixel Modules

• HV-MAPS

 $_{\odot}$ Thinned to 50 μm

 \circ Sensors 1 x 2 cm² or 2 x 2 cm²

Kapton[™] flex print

- o 25 µm Kapton™
- o 12.5 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting

Alu end wheels Support for all detectors

CAD of Kapton[™] frames

22/10/2014 • 104

Overall Design

• HV-MAPS

ο Thinned to 50 μm

 \circ Sensors 1 x 2 cm² or 2 x 2 cm²

- Kapton[™] flex print
 - o 25 µm Kapton™
 - o 12.5 µm Alu traces

Kapton[™] Frame Modules

- \circ 25 µm foil
- Self supporting
- Alu end wheels
 - Support for all detectors

- Two halves for layers 1+2
- 6 modules in layer 3
- 7 modules in layer 4

CAD of KaptonTM frames

Inner Layers

• HV-MAPS

- \circ Thinned to 50 μ m
- \circ Sensors 1 x 2 cm² or 2 x 2 cm²
- Kapton[™] flex print
 - o 25 µm Kapton™
 - o 12.5 µm Alu traces

Kapton[™] Frame Modules

- \circ 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

Vertex Prototype with 100 µm Glass

Outer Module

• HV-MAPS

- \circ Thinned to 50 μ m
- \circ Sensors 1 x 2 cm² or 2 x 2 cm²

Kapton[™] flex print

- o 25 µm Kapton™
- o 12.5 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

Layer 3 Prototype in Assembling Frame with 50 µm Glass

Detector Frame

• HV-MAPS

 \circ Thinned to 50 μ m

 \circ Sensors 1 x 2 cm² or 2 x 2 cm²

• Kapton[™] flex print

- o 25 µm Kapton™
- o 12.5 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels
 - Support for all detectors

Layer 3 Prototype in Assembling Frame with 50 µm Glass

Si-Layer Rad Length

- Radiation length per layer
 - o 2x 25 µm Kapton
 - X₀= 0.175‰
 - 15 µm thick aluminum traces (50% coverage)
 - X₀= 0.0842‰
 - o 50 µm Si MAPS
 - X₀= 0.534‰
 - 10 µm adhesive
 - X₀= 0.0286‰
- Sum: 0.822‰ (x4 layers) • For $\Theta_{min} = 22.9^{\circ}$ • X₀= 2.11‰

Dirk Wiedner, Mu3e collaboration

Thinning

-

nOvati

- 50 µm Si-wafers
 - Commercially available
 - HV-CMOS 50 μm (AMS)
 - o 50 µm for MuPix4
- Single die thinning
 - For chip sensitivity studies
 - o < 50 µm desirable

Tools

- Kapton-Frame tools:
 Sensor on Flex print
 - Gluing groove
 - Vacuum lift
 - Tools are tested with
 - 25 µm Kapton foil
 - 50 µm glass

Cooling Backup

Liquid Cooling

- Beam pipe cooling
 - With cooling liquid
 - 5°C temperature
 - Significant flow possible
 - ... using grooves in pipe
- For electronics
 - FPGAs and
 - Power regulators
 - Mounted to cooling plates
- Total power several kW

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 Distribution to Frame
 - V-shapes
 - Outer surface

150mW/cm² x 19080cm² = 2.86 KW

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 Distribution to Frame
 - V-shapes
 - Outer surface

Temperatures between 20°C to 70°C ok.

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside
 Magnet volume

Local flow for Tracker

- Distribution to Frame
 - V-shapes
 - Outer surface

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 - Distribution to Frame
 - V-shapes
 - Outer surface

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 Distribution to Frame
 - V-shapes
 - Outer surface

Comparison Simulation He and Air He Air

$v = 4.0 \ m/_{s}$

Full scale prototype

- Layer 3+4 of silicon tracker
- Ohmic heating (150mW/cm²)
- o 561.6 W for layer 3 +4
- o ... of Aluminum-Kapton™
- Cooling with external fan

 Air at several m/s
- Temperature sensors attached to foil

 LabView readout
- First results promising $\circ \Delta T < 60^{\circ} K$

Tests

- Full scale prototype
 - Layer 3+4 of silicon tracker
 - Ohmic heating (150mW/cm²)
 - o 561.6 W for layer 3 +4
 - o ... of Aluminum-Kapton™
- Cooling with external fan

 Air at several m/s
- Temperature sensors attached to foil

 LabView readout
- First results promising $\circ \Delta T < 60^{\circ} K$

Tests

22/10/2014 • 122

Test Results

• Full scale prototype

- Layer 3+4 of silicon tracker
- Ohmic heating (150mW/cm²)
- o 561.6 W for layer 3 +4
 o ... of Aluminum-Kapton[™]
- Cooling with external fan

 Air at several m/s
- Temperature sensors attached to foil

 LabView readout
- First results promising
 - ΔT < 60°K</p>
 - No sign of vibration in air

Comparison Simulation and Tests

Simulation with V-shape cooling

→ Extra Improvement using V-shapes as cooling channels

• Dirk Wiedner, Mu3e collaboration

Cooling outlets

22/10/2014 • 125

V-shape

Simulation with V-shape cooling

→ Extra Improvement using V-shapes as cooling channels

• Dirk Wiedner, Mu3e collaboration

Cooling outlets

22/10/2014 • 126

V-shape

He Cooling 250 mW/cm²

He Cooling 750 mW/cm²

DAQ Backup

22/10/2014 • 129

- FPGAs on detector
 90 (+96) pieces
- Receive sensor data

 36-45 LVDS inputs
- 5 Gbit/s outputs

 8 optical links
 ... to counting house
- Switching data between readout boards farms A-D

- FPGAs on detector
 90 (+96) pieces
- Receive sensor data

 45 LVDS inputs
- 5 Gbit/s outputs

 8 optical links
 ... to counting house
- Switching data between readout boards farms A-D

- FPGAs on detector
 90 (+96) pieces
- Receive sensor data

 45 LVDS inputs
- 5 Gbit/s outputs

 8 optical links
 ... to counting house
- Switching data between readout boards farms A-D

- FPGAs on detector
 90 (+96) pieces
- Receive sensor data

 45 LVDS inputs
- 5 Gbit/s outputs

 8 optical links
 ... to counting house
- Switching data between readout boards farms A-D

Readout Board

- FPGA readout boards

 4 per sub-detector
- 5 Gbit/s optical inputs

 16-28 inputs
- 10 Gbit/s optical output

 12 outputs to PCs
- Switching network

 A-D sub-farms
 One output per PC

22/10/2014 • 138

Readout Board

- FPGA readout boards

 4 per sub-detector
- 5 Gbit/s optical inputs

 16-28 inputs
- 10 Gbit/s optical output
 12 outputs to PCs
- Switching network
 • A-D sub-farms
 - One output per PC

22/10/2014 • 139

• Front end links

- Pixel sensor to on-detector FPGA
 - 400 800 Mbit/s
 - LVDS
- Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - o ... to readout boards
 - o 5 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - o ...to PC Farm

Dirk Wiedner, Mu3e collaboration

22/10/2014 • 141

- Front end links
 - Pixel sensor to on-detector FPGA
 - 400 800 Mbit/s
 - LVDS
 - Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - ... to readout boards
 - o 5 Gbit/s
- Optical links in counting room
 - Off-detector read out boards...to PC Farm

Trigger-less DAQ

- Front end links
 - Pixel sensor to on-detector FPGA
 - 400 800 Mbit/s
 - LVDS
 - Timing detector readout
- Optical links from detector
 - o Front end FPGAs
 - o ... to readout boards
 - o 5 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - o ...to PC Farm

22/10/2014 • 145

GPU-PC

- PC with GPU
- 10 Gbit/s Fiber input

 8 inputs from sub-detectors
- Data filtering
 - Timing Filter on FPGATrack filter on GPU
 - Data to tape < 100 MB/s

GPU computer

GPU-PC

- PC with GPU
- 10 Gbit/s Fiber input

 8 inputs from sub-detectors
- Data filtering
 - Timing Filter on FPGA
 - Track filter on GPU
 - Data to tape < 100 MB/s

Optical mezzanine connectors

GPU computer

Timing Filter

- Entire event on PCIe FPGA
- Tile and Fiber data

 Easy to match
 - Look for three tracks
- Reject data without three hits
 - o ... inside time interval

Under

discussion

Timing Filter

- Entire event on PCIe FPGA
- Tile and Fiber data

 Easy to match
 - Look for three tracks
- Reject data without three hits
 - o ... inside time interval

Under

discussion

 e^+

e

Vertex Filter

- Entire event on GPU
- Large target
 - Large spread of muons
 - Easy vertex separation
- Reject data without three tracks
 - ... inside area interval on target

Vertex Filter

- Entire event on GPU
- Large target
 - Large spread of muons
 - Easy vertex separation
- Reject data without three tracks
 - ... inside area interval on target

e

Schedule

- 2012 Letter of intent to PSI, tracker prototype, research proposal
- 2013/14 Detector R&D
- 2015 Detector construction
- 2016 Installation and commissioning at PSI
- 2017 Data taking at up to a few $10^8 \mu/s$
- 2018+ Construction of new beam-line at PSI
- 2019++ Data taking at up to 2 ·10⁹ μ/s

