The search for Lepton-Flavour Violation with

the Mu3e Experiment

on behalf of the Mu3e collaboration Frederik Wauters Johannes Gutenberg University Mainz

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Precision Physics, Fundamental Interactions and Structure of Matter

 $^+ \rightarrow e^+ e^+ e^-$

- Standard Model branching ratio 5•10-55
- Mu3e aims for a single event sensitivity of 1 • 10⁻¹⁶ (Phase II) of 2 • 10⁻¹⁵ (Phase I = this talk)
 - \rightarrow Search for new physics
 - \rightarrow Previous limit 1 10⁻¹² (SINDRUM, 1988)
- Complementary to $\mu \rightarrow e\gamma$ and $\mu N \rightarrow e$ in technique and new physic γ

Loop

$$\mu^+ \rightarrow e^+ e^+ e^-$$

Background:

 $a^+ \rightarrow e^+ e^+ e^-$

Background:

- Allowed $\mu \rightarrow eee$
- v's eat away E and **p**

- Combinatorial
 - Michel decay + Bhabha scattering (beam or decay e⁺)
 - Michel decay + ...
 - Misreconstructed tracks

The Mu3e detector concept

The Mu3e detector concept

۰

Recurl tracker with good vertex resolution and excellent momentum resolution over **a large energy range**

Detector design **DC beam** Good timing resolution Low material budget detector

- Good vertex reconstruction
- Good momentum resolution

- As thin as possible pixel detector
- Still Multiple Scattering dominated

Getting our muons

HIPA and μ hall —

Getting our muons

Getting our muons

Scintillating fibers as a thin, fast timing detector

What Mu3e can do according to the Monte Carlo

Mu3e Pixel detector:

- High Voltage Monolithic Active Pixel Sensors (HV-MAPS)
- Fast charge collection with HV \approx -85V
- Readout and logic on chip
 - analogue part in pixel
 - digital part in periphery
- Thinned to 50 µm
- Pixel size: 80 x 80 µm
- 2 x 2 cm chip
- 1.25 Gb/s LVDS readout

I. Peric et al., NIMA **731**, 131 (2008)

Mu3e Pixel detector:

- High Voltage Monolithic Active Pixel Sensors (HV-MAPS)
- Fast charge collection with HV ≈ -85V
- Readout and logic on chip
 - analogue part in pixel
 - digital part in periphery
- Thinned to 50 µm
- Pixel size: 80 x 80 μm
- 2 x 2 cm chip
- I.25 Gb/s LVDS readout

I. Peric et al., NIMA 731, 131 (2008)

MuPix Sensors

arXiv:1803.01581

<u>Mupix 8:</u>

- 19x10 mm
- **20→80** Ωcm
- final design decisions

Timing detectors

Fibres

• Excellent timing

- 350 ps < 500 ps (fibres)
- 70 ps < 100 ps (tiles)
- Fibres: thin \rightarrow light yield \rightarrow single photon threshold
- SiPM + custom readout chip MuTrig (JINST 12 C01043 (2017))
- 1.25 Gb/s serial readout

Tiles

So what's next

Integration meeting 2018

List of Mu3e Institutes

- Department of Physics at the University of Bristol (BRI)
- Department of Physics at the University Geneva (GVA)
- Kirchhoff Institute for Physics of the Ruprecht-Karls-Universität Heidelberg (HD-KIP)
- Physics Institute of the Ruprecht-Karls-Universität Heidelberg (HD-PI)
- Institute for Data Processing & Electronics of the Karlsruhe Institute of Technology (KIT)
- Department of Physics at the University of Liverpool (LIV)
- Department of Physics at the University College London (UCL)
- Institute for Nuclear Physics of the Johannes Gutenberg-Universität Mainz (JGU)
- Department of Physics at the University of Oxford (OXF)
- Particle Physics Laboratory at the Paul Scherrer Institut (PSI), Villigen
- Department of Physics at the ETH Zürich (ETHZ)
- Department of Physics at the University Zürich (UZH)

So what's next

Future

Extra slides

Renormalisation-group improved analysis of $\mu \rightarrow e$ processes in a systematic effective-field-theory approach

A. CRIVELLIN^{*a*,1}, S. DAVIDSON^{*b*,2}, G. M. PRUNA^{*a*,3} AND A. SIGNER^{*a*,*c*,4}

Step	Step efficiency	Total efficiency
Muon stops	100%	100%
Geometrical acceptance, short tracks	43.2%	43.2%
Geometrical acceptance, long tracks	60.6%	26.2%
Short track reconstruction	89.9%	38.8%
Long track reconstruction	80.4%	21.0%
Vertex fit	98.6%	20.8%
Vertex fit $\chi^2 < 30$	98.1%	20.4%
CMS momentum < 8 MeV/c	98.7%	20.1%
Timing	98.0%	19.7%

Table 21.1: Efficiency of the various reconstruction and analysis steps.

Pixel:

Digital part: periphery

SciFi Readout – custom ASIC: MuTRiG mixed mode, \approx 50 ps t-stamps

high impedance, opt. differential

Tiles: both Thresholds Fibres: only Timing-Threshold and Energy-Flag "time mode"

	STiC3.1	MuTRiG
	done	outlook
number of channels	64	32
LVDS speed [Mbit/s]	160	1250
event size [bit]	48	47
time mode	-	26
event rate / chip [MHz]	\sim 2.6	\sim 20
time mode	-	\sim 38
event rate / ch [kHz]	${\sim}40$	${\sim}650$
time mode	-	\sim 1200
power per channel [mW	/] 35	35
size [mm x mm]	5x5	5x5

L. Gerritzen 2018-0

Invisible dark photons

 $\mu \rightarrow e \nu \overline{\nu} A'$ is a four-body decay...

- Shift to Michel spectrum
- Can also come from detector misalignment
- Not really promising

- + $0 < m_\chi < m_\mu$ m_e
- Very large m_x: positron does not have enough momentum to be seen
- Very low m_x: "peak" sits on top of Michel edge, more a shift have to be very careful not to calibrate it away
- + $\rm m_{\chi}$ of 25 to 95 MeV "easy"

Momentum resolution for short and long tracks

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 - V-shapes
 - Outer surface
 - In between layers
 - Between SciFi and layers

400mW/cm² x 11376cm² = 4.5504 KW

Dirk Wiedner Wengen 2018

26.02.2018 • 3

Material