3D-Triplet Tracking for LHC and Future High Rate Experiments

André Schöning Physikalisches Institut, Universität Heidelberg

Workshop on Intelligent Trackers WIT 2014 University of Pennsylvania May 14-16, 2014

Overview

- 3D-tracking and multiple scattering
- Motivation for triplet layer designs
- General design studies:
 - track resolution
 - track linking
- Triplets and track triggers
- Conclusions

Motivation for 3D Triplet Tracking

• High-Lumi-LHC (>2025) or Future Circular Hadron Colliders (>2035-2040):

- ~ 150 Pileup Events (L=5 \cdot 10³⁴) \rightarrow O(3000) tracks @25ns
- Physics benefit depends crucially on the performance of detectors
 - high precision (offline)
 - fast selectivity (online filtering / trigger)
- The combinatorial problem is main problem for fast track reconstruction
 - \rightarrow can be tackled by:
 - fast algorithms
 - optimised tracker designs
- Opportunities with new detector technologies (CMOS sensors)
 - build a full pixel tracker?
 - potential and possibilities exploiting 3D tracking?

Three Dimensional (3D) Tracking

Free particle in homogenious solenoidal magnetic field

Problem: position measurement interferes with particle trajectory (multiple scattering)

Three Dimensional (3D) Tracking

Multiple Scattering:

need external constraints \rightarrow scattering theory!

fitting is required!

Three Dimensional (3D) Tracking

Hit uncertainties (@high momentum)

 Multiple scattering uncertainties (@low momentum)

Standard implementations for track fitting:

- Kalman-Filter
- 3D Broken Line Fit
- \rightarrow both time consuming (matrix inversion, iterative, complex, ...)

Multiple Scattering @ Low Momentum

- Modern solid state tracking detectors allow for (almost) infinite precision → small pixel size
 - hit resolution becomes negligible at low momentum where most particles are!
- Fast and precise reconstruction of low momentum tracks is important for good detector performance:
 - pile up
 - track isolation
 - particle flow concept \rightarrow improves jets, MET, ...

→ neglect hit uncertainties and consider multiple scattering only (for the moment)

Simple Multiple Scattering Fit

 \rightarrow neglect hit uncertainties

Track fit model:

$$\chi^2(R_{3D}) = \frac{\Theta_{MS}(R_{3D})^2}{\sigma_{\theta}^2} + \frac{\Phi_{MS}(R_{3D})^2}{\sigma_{\phi}^2}$$

 $\rightarrow \chi^2$ minimisation

Calculation:

$$R_{\rm 3D} \quad = \quad - \; \frac{\kappa \; \tilde{\Phi}_{\rm C} + \beta \; \tilde{\Theta}_{\rm C}}{\kappa^2 + \beta^2} \label{eq:R3D}$$

constants calculable from the three hit positions

FAST!

used in Mu3e experiment (filter farm)

 \rightarrow presentation by Alex Kozlinskiy

Feature of 3D Triplet-Fit

Track Resolution from multiple scattering

only slightly improved performance at low polar angles

Tracking with Triplets

Possible advantages:

- standalone tracking in triplet layers possible
- no beamline constraint needed (helps to suppress BG)
- little combinatorics
- one triplet layer might be sufficient for triggering?

How does it compare with other (more standard) design options in terms of • track resolution?

• high momentum behaviour?

 \rightarrow study and compare different geometries

Optimal Geometry

However, such a geometry cannot be used for high track multiplicity environments!

L large!

Tracker Geometry & Resolution

Andre Schöning, PI Heidelberg

Tracking Resolution Study

Basic simulation parameters:

- All pixel (perfect hit information)
- instrumentation: R = 20 100 cm
- distance between stacked layers $\Delta = 10 \text{ mm}$
- magnetic field: B = 2T
- layer thickness: $X = 0.01 X_0$
- energy loss: 0
- only barrel type of detector with cylindrical symmetry

Multiple scattering simulated using Highland formula (PDG)

Results for Multiple Scattering (Only)

Results for Multiple Scattering (Only)

geometries with large bending distances improve measurement precision for Φ

Andre Schöning, PI Heidelberg

Comparison: MS with Helix Fit

Azimuthal angle at beamline

Andre Schöning, PI Heidelberg

Comparison: MS with Helix Fit

Azimuthal angle at beamline

In general: MS-fit about 2 times better than helix fix!

 small differences for regular designs

 large differences for irregular designs

\rightarrow Triplet geometry with MS-fit provides best resolution

Relative Momentum Resolution

multiple scattering only

• constant up to very high p_T

Relative Momentum Resolution

multiple scattering only

• constant up to very high p_T

finite pixel size*: 40 µm x 40 µm

• finite pixel size destroys good momentum resolution at high p_{τ} (as expected)

regular geometry more robust

Andre Schöning, PI Heidelberg

Momentum Resolution with Pixel Errors

Momentum Resolution with Pixel Errors

Summary of Resolution Studies

Track Reconstruction +Linking

... and the combinatorial problem

Track uncertainties determine the A) hit errors combinatorial problem in track linking!

Extrapolation of Track Uncertainties

B) scattering errors

uncertainty ~25 mm at d=40cm

Remark: reduced uncertainty if momentum known!

Extrapolation of Track Uncertainties

Track uncertainties determine the combinatorial problem in track linking!

A) hit errorsB) scattering errors

Extrapolation uncertainty for triplets: $\Delta = 10 \text{ mm}$

uncertainty ~600 µm at d=40cm

Andre Schöning, PI Heidelberg

Andre Schöning, PI Heidelberg

0

uncertainty (mm) ¹⁰
¹⁰
¹⁰
¹⁰

 $\frac{1}{100} -20$ $\frac{1}{100} -30$ $\frac{1}{100} -40$

-50

50

 z/θ

Extrapolation of Track Uncertainties

Extrapolation uncertainty for triplets: $\Delta = 10 \text{ mm}$

 σ_{nit} =12 μ m (a_{pixel} = 40 μ m)

 $\sigma_{scott} = 1 mrad$

combined

Track uncertainties determine the combinatorial problem in track linking!

A) hit errors B) scattering errors

Φ

position uncertainty envelop

General Design Linking Study

Methodology

- Generation of minimum bias events
- track multiplicity 250 64000 per event for |n|<1.5</p>
- Simulation: scattering and hit errors
- Single hit efficiency 100%
- Hits required in all planes
- Linking based on track fit (chi2-cut based on MS&hit error) \rightarrow 99.5% track finding efficiency

linking speed depends also on linking strategy

- strategy A: inside out
- strategy B: vector tracking (first form pairs)
- strategy C: triplet tracking (first form triplets)

Figures of merit:

- number of triplet fits
- hit ambiguities (fake track) rate \rightarrow **physics performance**
- \rightarrow speed performance

Track Linking Results

Best peformance achieved for:

- triplet $9 \rightarrow$ smallest number of fits
- vector 6,10 \rightarrow least ambiguities

Summary of Linking Studies

Triplets for Track Triggers

- Independent track reconstruction (local) in triplets
- Goal: reject low momentum tracks

Performance of inner triplet (3A) σ (DCA) = 5-8 mm (w/o additional constraints) σ (Z0) = 5-15 mm (w/o additional constraints) σ (p)/p = 4% @ p_T=2 GeV

Conclusion:

triplets are very robust against BG from

- low momentum tracks
- → secondary (tertiary) interactions

momentum resolution with beamline constraint

Note: precision could be further improved by increasing the layer stacking

Andre Schöning, PI Heidelberg

HV-MAPS Triplets & Online Reconstruction

- stitched CMOS chips
- module width 4cm
- 5% readout strip at both sides
- power and control via flex prints
- wire bonding between sensors and to flex prints
- readout chain
- push hit address and timestamp

HV-MAPS Triplets & Online Reconstruction

- stitched CMOS chips
- module width 4cm
- 5% readout strip at both sides
- power and control via flex prints
- wire bonding between sensors and to flex prints
- readout chain
- push hit address and timestamp

HV-MAPS Triplets & Online Reconstruction

Rate Estimates for HL-LHC |η|<3

triplet radius	#ladders	data rate/ module (Gbit/s)	#hits per halfladder	#GPUs
20 cm	36	120	1.2 · 10 ⁹ /s	72
60 cm	100	40	0.4 · 10 ⁹ /s	200
100 cm	164	24	0.24 · 10 ⁹ /s	328

GPU solution - processing all hits for every event - technically feasible

Conclusions

• Pixel tracker with triplet layer geometry proposed for tracking in hadron colliders (LHC, ...) with highest multiplicities

 Triplet of pixels provide full track information, benefitial for fast and robust track reconstruction (trigger)

 Resolution for low momentum tracks can be even improved with the three triplet design

Results obtained so far are promising and motivate more detailed studies...

