

A Novel Experiment Searching for the Lepton Flavor Violating Decay

Dirk Wiedner, Heidelberg On Behalf of the Mu3e Proto-Collaboration September 20th 2012

Physics Motivation

Lepton flavor violation?

Standard model:

• No lepton flavor violation

Physics Motivation

Lepton flavor violation: $\mu^+ \rightarrow e^+e^-e^+$

Standard model:

- No lepton flavor violation, but:
 - Neutrino mixing
 - Branching ratio $<10^{-50}$ → unobservable

The Mu3e Signal

- $\mu \rightarrow eee rare in SM$
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions

μ+			e+
N	Z'	-	
	K	е+	X
		`	e

The Mu3e Signal

- $\mu \rightarrow eee rare in SM$
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions

- ➢ Rare decay (BR<10⁻¹², SINDRUM)
- For BR O(10⁻¹⁶)
 - >>10¹⁶ muon decays
 - ➤ High decay rates O(10⁹ muon/s)

The Mu3e Background

Combinatorial background

 µ⁺→e⁺vv & µ⁺→e⁺vv & e⁺e⁻
 o many possible combinations

- Good time and
- Good vertex resolution required

The Mu3e Background

μ⁺→e⁺e⁻e⁺∨∨

Missing energy (v)

Good momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

9/20/2012 • 7

Challenges

- High rates
- Good timing resolution
- Good vertex resolution
- Excellent momentum resolution
- Extremely low material budget

Challenges

- High rates: $10^9 \,\mu/s$
- Good timing resolution: 100 ps
- Good vertex resolution: ~100 μm
- Excellent momentum resolution: ~ 0.5 MeV/c²
- Extremely low material budget:
 - > $1 \times 10^{-3} X_0$ (Si-Tracker Layer)
- HV-MAPS spectrometer
 - \succ 50 µm thin sensors
 - ➤ B ~1 T field
- + Timing detectors

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- **Recurl station**
- Tile hodoscope

- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Scintillating fiber tracker
- **Recurl station**
- Tile hodoscope

- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker lacksquare
- **Recurl station**
- Tile hodoscope

• Tile hodoscope

PSI µ-Beam

Paul Scherrer Institute Switzerland:

- 2.2 mA of 590 MeV/c protons
- Phase I:
 - Surface muons from target E
 - \circ Up to a few 10⁸ μ /s
- Phase II:
 - New beam line at the neutron source: HIMB project (2y application)
 - Several 10⁹ μ/s possible
 - > >10¹⁶ muon decays per year
 - ▶ BR 10⁻¹⁶ (90% CL)

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- Reversely biased

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- Reversely biased ~60V
 - Charge collection via drift
 - ➤ Fast O(100 ns)
 - $_{\circ}$ Thinning to < 50 μ m possible

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- Reversely biased ~60V
 - Charge collection via drift
 - ➤ Fast O(100 ns)
 - \circ Thinning to < 50 μ m possible
- Integrated readout electronics

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

Current Chip Prototype

- 180 nm HV-CMOS
 - Pixel matrix:
 42 x 36 pixel
 39 x 30 µm² each
- Ivan Peric ZITI
 - Analog part almost final
 - Digital part in next submission

Timing Tests

- Timing critical
 - o 10⁹ µ/s ➤ O(10 ns) resolution
- LED pulsed sensor
- Double pulse resolution

Timing Tests

- LED pulsed sensor
- Double pulse resolution
 Visible in oscilloscope ----

Timing Tests

Double Pulse Resolution

- Ratio of
 - o resolved to
 - o unresolved double pulses
- 5.27 ± 0.01 µs

Ratio of unresolved Double Pulses

Construction

$\bullet \quad \bullet \quad \bullet$

• Dirk Wiedner, Mu3e collaboration

9/20/2012 • 24

Mu3e Silicon Detector

Recurl pixel layers

Scintillator tiles

Inner pixel layers

Targe

Scintillating fibres

µ Beam

- Conical target
- Inner double layer
 12 and 18 sides of 1 x 12 cm
- Outer double layer
 24 and 28 sides of 2 x 36 cm
- Re-curl layers
 - 24 and 28 sides of 2x 72 cm
 - Both sides (x2)

180 inner sensors4680 outer sensors▶ 274 752 000 pixel

Outer pixel layers

Material

- HV-MAPS
- Flex print
- Kapton Frame

Inner Double Layer

Timing Detectors

Recurl pixel lavers

- Fiber hodoscope
 - Before outer pixel layers
 - 250 μm scintillating fibers
 - o SiPMs
 - o 1 ns resolution
- Tile detector
 - After recurl pixel layers
 - 1x1 cm² scintillating tiles
 - o SiPMs
 - 100 ps resolution

Schedule

- 2012 Letter of intent to PSI, tracker prototype, technical design, research proposal
- 2013 Detector construction
- 2014 Installation and commissioning at PSI
- 2015 Data taking at up to a few $10^8 \mu/s$
- 2016+ Construction of new beam-line at PSI
- 2017++ Data taking at up to 3 ·10⁹ μ/s

Institutes

- Mu3e proto-collaboration:
 - DPNC Geneva University

• Paul Scherrer Institute

- Particle Physics ETH Zürich
- Physics Institute Zürich University

Physics Institute Heidelberg University

9/20/2012 • 32

o 7ITI Mannheim KIP Heidelberg

INSTITUT FÜR PHYSIK

PAUL SCHERRER INSTITUT

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Summary

- Mu3e searches for lepton flavor violation
- > 10¹⁶ μ -decays \rightarrow BR < 10⁻¹⁶ (90% CL)
- Silicon tracker with ~275M pixel
- HV-MAPS 50 µm thin
- Two SiPM based timing systems
- Prototypes look encouraging

Backup Slides

Sensor + Analog + Digital

Pulse Shape

- LED setup
- Test pulse latency
- + time over threshold
- ... for different thresholds
- ➤ faster shaping needed

- Pixel logic:
 - Address generation
 - o Time stamp
 - Column bus logic

Column logic

- Priority logic
- ... using tri-state bus
- Fifo buffer

Chip wide logic

- Data frame generation
- Serializer(s)
 - 800 Mbit/s LVDS

Data Acquisition

- 2.5 GHz muon decays
- 50 ns readout frames
- O(5000) pixel chips
 800 Mb/s readout links
- O(7500) scintillating fibers
- O(7000) timing tiles
 DRS readout
- 3 layers switching FPGAs
 Optical data links
- Online filtering

9/20/2012 • 39

Event Filter Farm

- Triggerless readout
- GPU computers

 PCIe FPGA/optical input
 Tflop/s GPU
- 10x faster than CPU
 - Requires custom code
 - 🛃 Makes farm affordable

Optical mezzanine connectors

GPU computer

Cooling

- 2 m² silicon detector
- Up to 200mW/cm²
- \geq 4 kW cooling
- 60 °C maximum
- Gaseous helium
- Laminar flow
- Tests:
 - o Inductive heatingo Aluminum foil

Thinning

- 50 µm Si-wafers
 Commercially available
 HV-CMOS 75 µm (AMS)
- Single die thinning

 For chip sensitivity studies
 < 50 µm desirable
 - o In house grinding?
 - Local company

Si-Layer Rad Length

- Radiation length per layer
 - o 2x 25 µm Kapton
 - X₀= 1.75e-4
 - 15 µm thick aluminum traces (50% coverage)
 - X₀= 8.42e-5
 - o 50 µm Si MAPS
 - $X_0 = 5.34e-4$
 - 10 µm adhesive
 - X₀= 2.86e-5
- Sum: 8.22e-4 (x4 layers)
 o For Θ_{min} = 22.9°
 o X₀= 21.1e-4

• Dirk Wiedner, Mu3e collaboration

Flex Print

- Single Layer in active region
- Multilayer in "cable" end
- LVDS buffers at edge

Tools

- Kapton-Frame tools:
 Sensor on Flex print
 - Gluing groove
 - Vacuum lift
 - Tools are tested with
 - 25 µm Kapton foil
 - 50 µm glass

Outer Double Layer

Outer Doublet Design

Frame Support

- Support design light weight
 - Spokes combine all separate modules
 - Connected by metal beams
 - ... running in bushings

Fiber Hodoscope

- 250 µm scintillating fibers
 - Kuraray SCSF-81M
 - double cladding
 - o 7500 in total
- Very high occupancies:
 24% in 50ns time frame
- Sampling readout
 - o SiPM
 - o DRS5 chip
 - From Stefan Ritt, PSI

Tile Detector

- 1x1 cm² scintillating tiles
 0(7000)
- GosSip simulation

 MPPC with 3600 pixels
 100 ps resolution (RMS)
 97% efficiency

Momentum Resolution

- Multiple scattering only
- Current design:
 - o 50 µm silicon
 - o 50 µm Kapton
 - Helium gas cooling
 - 3 layer fiber tracker

