HV-MAPS Tracking Telescope: Alignment and Efficiency Analysis

> Dorothea vom Bruch for the Mu3e Collaboration

DESY Telescope Workshop

January 20, 2015

Physikalisches Institut Heidelberg

Outline

- The Mu3e Experiment
- Mupix Sensors
- Telescope Setup
- Beam Tests
- Alignment
- Efficiency Analysis

The Mu3e Experiment

Mu3e searches for the charged lepton-flavour violating decay $\mu^+\to e^+e^+e^-$ with a sensitivity better than 10^{-16}

- Coincident in time
- Single vertex

$$\Sigma \vec{p_i} = 0$$

•
$$E = m_{\mu}$$

The Mu3e Experiment

Mu3e searches for the charged lepton-flavour violating decay $\mu^+ \to e^+ e^+ e^-$ with a sensitivity better than 10^{-16}

- Coincident in time
- Single vertex

$$\Sigma \vec{p_i} = 0$$

$$E = m_{\mu}$$

Jan 20, 2015

HV-MAPS Telescope

Random Combinations

- Not coincident in time
- No single vertex
- $\Sigma \vec{p_i} \neq 0$

•
$$E \neq m_{\mu}$$

Dorothea vom Bruch

The Mu3e Detector

Requirements:

- Excellent momentum resolution: < 0.5 MeV/c
- Good timing resolution: 100 ps for tiles, 1 ns for fibres, 20-50 ns for pixels
- Good vertex resolution: 100 μm

The Mu3e Detector

Requirements pixel detector:

- Pixel size: $80 \,\mu\text{m} \times 80 \,\mu\text{m}$
- Continuous readout frequency: 20 MHz
- \blacksquare Low material budget \rightarrow 50 μm thickness

High Voltage Monolithic Active Pixel Sensors

- Zero suppressed readout
- 8 bit timestamps

- HV applied: 50 90 V
- Charge collection via drift

(I. Peric, P. Fischer et al., NIM A 582 (2007) 876)

Mupix Prototypes

Mupix6

- Pixel area: $103 \times 80 \,\mu\text{m}^2$
- Active area: 9.4 mm²
- Analog + digital readout
- Double stage amplifier
- Time stamp resolution: < 17 ns
- 250 µm chip
- On 100 µm PCB board

•
$$x/X_0 = 2.5\%$$

Thinned Mupix4 50 μ m sensor on 25 μ m Kapton foil \Rightarrow 0.6 % radiation lengths

Telescope Setup

- 4 layers of Mupix6 sensors
- Read out by two FPGAs
- Scintillating tiles in front and back

Telescope Setup

Comparison with EUDET Telescope

	EUDET Telescope	HV-MAPS Telescope
Pixel size	$18.4\mu{ m m} imes18.4\mu{ m m}$	$103\mu{ m m}$ x 80 $\mu{ m m}$
Active area	224 mm ²	9.4 mm ²
Material	50 μ m sensor	50 μ m sensor
	50 μ m protective foil	25 μ m Kapton
in radiation lengths	0.7 ‰	0.6 ‰
Time resolution	$(115.2 \ / \ \sqrt{12}) \mu s$	17 ns
Frame rate	9 kHz	20 MHz
Maximum track rate	$\sim 100{ m kHz}$	$\sim 20{ m MHz}$

Beam Tests

DESY

First test at T22 beamline with Mupix4 chips

PSI

- πM1 beamline
- 250 MeV π, μ, e
- Beam trigger rate of tiles: > kHz
- First test with Mupix6 chips including time stamps
- On one layer (DUT), scans were performed:
 - High Voltage
 - Threshold Voltage

Online Alignment

- Adjust planes mechanically with help of laser
- Study correlations between hits on different planes → Improve mechanical adjustment

Straight Track Fit

Loop over all possible hit combinations and fit tracks with

- 1 hit in each plane
- $\Delta t < 250 \, \text{ns}$
- Hot pixels removed
- Calculate residuals
- Adjust alignment manually in several iterations

Fit: Position and Slope

Residuals

Aligned to within 10 μ m

HV-MAPS Telescope

Dorothea vom Bruch

Residuals Versus Position

Threshold = 0.68 V, HV = 60 V, single run

Efficiency Analysis

- Fit tracks from three hits without DUT
- Extrapolate tracks onto DUT
- Match extrapolated tracks to hits on DUT

Efficiency Analysis

Efficiency

Threshold = 0.7 V, HV = 60 V

Jan 20, 2015

HV-MAPS Telescope

Efficiency Analysis

Threshold =
$$0.7 \text{ V}$$
, $\text{HV} = 60 \text{ V}$

Jan 20, 2015

HV-MAPS Telescope

Dorothea vom Bruch

High Voltage Scan

by Jan Repenning

Signal Wave Form

Threshold Scan

HV = 60 V

by Jan Repenning

Conclusions

- First test of Mupix6 telescope
- Achieved alignment:
 - to within 10 μ m
 - minimized rotations of planes
- Straight track model works
- Efficiency of Mupix6 determined to > 94 %
- Voltage and threshold dependency studied

Outlook

Improve mechanics:

- Adjust y-position more precisely
- Integrate tiles as triggers with movable posts

 Possibly use software for minimization of residuals and alignment, such as Millepede

Next beam test at DESY in March:

- Further measurements at other thresholds
- Test new prototype Mupix7

Final goal: Working telescope with online reconstruction, streaming readout \Rightarrow Test Mu3e DAQ

Thank you for your attention!

Backup Slides

Time Resolution

Jan 20, 2015

HV-MAPS Telescope

Dorothea vom Bruch