The Mu3e Experiment: New Physics in Different Places?

Moritz Kiehn Université de Genève Département de physique nucléaire et corpusculaire

DPNC Seminar, Genève, February 2017

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES

Overview

- 1. Charged lepton flavor violation
- 2. Signal and background
- 3. Detector concept
- 4. Technologies
- 5. Reconstruction
- 6. Summary

Flavor in the Standard Model

Three Generations

Initially:

- · Quark transitions via weak interaction
- Lepton flavor conserved

Neutrino Mixing

- LFV in neutral sector
- Charged sector?

Anything else?

adapted from Wikipedia

Charged lepton flavor violation?

 $W^{+} \gamma/Z e^{+}$ $\mu^{+} \overline{\nu_{\mu}} \overline{\nu_{e}} e^{+}$ Example: $\mu^{+} \rightarrow e^{+}e^{-}e^{+}$

In the Standard Model

• Via neutrino mixing

• Suppressed by
$$\sim \left(rac{\Delta m_v^2}{m_W^2}
ight)^2$$

• Expected BR(
$$\mu \rightarrow eee$$
) $\ll 10^{-50}$

Importance

- Observable rate only from new physics
- Sensitive new physics search

Searches for charged lepton flavor violation

W. Marciano et al. (2008), with modifications

Beyond the Standard Model

- Supersymmetry
- Seesaw
- ...

Contact-like

- Extra dimensions
- New heavy bosons

• ...

Effective theory

Sensitive up to O(1000 TeV)

Compare Kuno, Okada (2001) and de Gouvêa, Vogel (2013) Moritz Kiehn The Mu

The Mu3e Experiment:New Physics in Different Places?

Searches with muons

MEG upgrade

Comet/Mu2e

Mu3e: this talk

Current Limits

cLFV Process	BR @ 90 %CL	Experiment
$\mu^+ \to e^+ e^- e^+$	$<1 \times 10^{-12}$	Sindrum Nucl.Phys. B299(1)
$\mu^+ ightarrow { m e}^+ \gamma$	$< 5.7 \times 10^{-13}$	MEG arXiv:1303.0754
$\mu^- + Au \rightarrow e^- + Au$	$< 7 \times 10^{-13}$	Sindrum II Eur. Phys. J. C47 337-346

The Mu3e experiment

Search for $\mu^+ \rightarrow e^+ e^- e^+$ Planned sensitivity:

- Phase I: 2 in 10¹⁵ decays (existing beamline)
- Phase II: **1 in 10¹⁶** decays (future beamline)

4 orders of magnitude over previous experiment (SINDRUM 1988)

The Mu3e collaboration

PAUL SCHERRER INSTITUT

Paul Scherrer Institute

ETHzürich

Universität Zürich^{war} ETH Zürich

University Zürich

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ Heidelberg University

Karlsruhe Institute of Technology

Mainz University

Signal

- Common vertex
- Same time

•
$$\left(\sum P_i\right)^2 = m_{\mu}^2$$

- $\sum \vec{p}_i = 0$ (muon at rest)
- *p* < 53 MeV

Internal conversion background

- Common vertex
- Same time
- $\left(\sum P_i\right)^2 < m_{\mu}^2$
- $\sum \vec{p}_i \neq 0$
- *p* < 53 MeV
- → Requires excellent momentum resolution

Internal conversion background

Djilkibaev, Konoplich, Phys.Rev.D79, 2009

- Common vertex
- Same time
- $\left(\sum P_i\right)^2 < m_{\mu}^2$
- $\sum \vec{p}_i \neq 0$
- *p* < 53 MeV
- → Requires excellent momentum resolution

Combinatorial background

- from Michel decay, Bhabba scattering, photon conversion, ...
- No common vertex
- Not same time
- → Requires good vertex resolution
- → Requires good time resolution

Multiple scattering

$$heta_{MS} \sim rac{1}{p} \sqrt{x/X_0}$$

Mu3e example

- p = 35 MeV/c
- 50 µm Si
- $\Omega R = 5 \text{ cm}$
- $\rightarrow \Delta y \approx$ 320 µm
- → Scattering dominates

Detector requirements

Environment

- High rate: >10 $^{9} \mu^{+}$ Decays/s
- Low momentum: p <53 MeV
- Multiple scattering dominates

Detector

- Spatial resolution: ${<}100\,\mu m$
- Time resolution: <1 ns
- Low mass: $x/X_0 \sim 1 \%$
- Momentum resolution: 0.5 MeV

Detector Layout

⊗ß 50 MeV/c 25 MeV/c 12 MeV/c

Question: Acceptance vs. resolution

Detector Layout

Question: Acceptance vs. resolution

Detector Layout ØB 12 MeV/c 50 MeV/c 25 MeV/c

Question: Acceptance vs. resolution Answer: both

Recurling tracks

Momentum resolution dominated by multiple scattering

$$\frac{\sigma_p}{p} \sim \frac{\theta_{MS}}{\Omega}$$

with
$$heta_{MS} \sim rac{1}{p} \sqrt{x/X_0}$$

Uncertainty vanishes at $\Omega \sim \pi$ (first order)

- Electrons p <53 MeV
- Multiple scattering dominates

- Electrons p <53 MeV
- Multiple scattering dominates

Paul Scherrer Institut Villigen, Switzerland

Paul Scherrer Institut

the state of the second

Proton accelerator

Proton accelerate

2.2 mA at 590 MeV Continuous beam Muon beams 10⁸ μ/s available Higher rates are under study

Experimental area and beamline

Experimental area and beamline

 π E5 beamline ~28 MeV surface muons Shared with MEG

The Mu3e Experiment:New Physics in Different Places?

Target

Simulated stopping distribution

Thin, hollow, double-cone geometry Optimized stopping power

Ultra-lightweight mechanics

- 50 µm Silicon sensor
 - 75 µm Kapton flexprint
 - + 25 μm Kapton support frame
 - \rightarrow ~1‰ Radiation length

Ultra-lightweight mechanics

Outer layer module

V-shaped groove for stability and cooling

Outer layers

Mechanical prototype

Silicon Pixel Sensors

Hybrid

Monolithic Active Pixel Sensor

- + HV ${\sim}700\,V$
- + Sensor thickness ${\sim}250\,\mu m$
- Extra material
- Complex, (expensive)

- + HV ${\sim}80\,V$ (HV-MAPS)
- Thin active zone ${<}20\,\mu\text{m}$
- Cheap, commercial process

50 µm silicon

Monolithic Active Pixel Sensors

I. Peric, P. Fischer et al. NIMA 582(2007)876

- HV \sim 80 V (HV-MAPS)
- Fast charge collection by drift
- Thin active zone <20 µm
- Fully integrated readout electronics

MuPix7 sensor prototype

- + 103 \times 80 μm^2 pixel size
- $3.8 \times 4.1 \text{ mm}^2$ sensor size
- Zero-suppressed, binary hits
- Global threshold + per-pixel tune-dac
- Fully integrated trigger-less readout
- LVDS serial link 1.6 Gbit/s

Testbeam at DESY

External EUDET-type telescope

U

Testbeam at PSI Custom MuPix-based telescope · JUN

S SON

9 SOAT

NO LESS

1 90*

Mupix7 performance

0° incidence

60° incidence

Measured at DESY

4 GeV electrons

-85 V sensor bias

MuPix7 time resolution

- DESY test beam
- 4 GeV electrons
- Using external scintillator as reference

Next: MuPix8

- First full-size prototype
- $80 \times 80 \,\mu\text{m}^2$ pixel size
- Updated electronics
- 4x LVDS serial link 1.6 Gbit/s
- Joint submission with Atlas CMOS
- Submitted end of 2016, AMS 180 nm technology

Occupancy and timing

2×10^9 decays, 1 ns resolution

Fibre detector

Thin ribbons Square/round 250 µm scintillating fibres SiPM-based readout Custom readout chip STiC/MuTrig

Fibre time resolution

Square fibre

Tile detector

Tile detector prototype

4x4 tile prototype Test beam measurements at DESY - TWC

 $\sigma = (70 \times \sqrt{2}) \text{ ps}$

400

200

No TWC

Cooling

Cooling with gaseous helium Global and local flow

Thermal prototype

Heatable ladder 400 mW cm^{-2} Variable helium flow -

Cooling tests

FEM simuations

Full phase I detector

Readout architecture

Tracking with multiple scattering

Dominating position

Reconstruction

- Kalman filter
- General Broken Lines
- Anything else?

Dominating scattering

Mu3e is here

Triplet(s) track fit

Assumptions:

- No position error
- No energy loss
- Thin scatterer at middle hit

Minimize:

$$\chi_i^2(\mathbf{R}_{3D}) = \frac{\varphi_{\rm MS}(\mathbf{R}_{3D})^2}{\sigma_\varphi^2} + \frac{\theta_{\rm MS}(\mathbf{R}_{3D})^2}{\sigma_\theta^2}$$

Problem: highly non-linear Solution: linearize around circle

Berger et al., NIM A844 135-140

Triplet(s) track fit

1. Define overlapping triplets

$$\chi^2(\bar{R}_{3D}) = \sum \chi_i^2$$

2a. Minimize χ^2 globally 2b. Equivalent: minimize each triplet

$$\bar{R}_{3D} = \frac{\sum w_i R_{3D,i}}{\sum w_i}$$

Simplified simulation

Track resolution

Layout and uncertainties

Uncertainties increased by factor 5

Berger et al., NIM A844 135-140

Simplified simulation

Track resolution

Layout and uncertainties

Uncertainties increased by factor 5

Berger et al., NIM A844 135-140

Phase I full simulation and reconstruction

p [MeV] و_p [MeV/c] 3 52 0.5 p_{mc} [MeV/c] λ [rad] p [MeV] [MeV/c] 0 <u>в</u> 0.3 0 0.1 0.1 0.0 0 1.5 50 20 pmc [MeV/c] λ [rad]

Momentum resolution Only central tracker 4 hits

49

With recurl stations 6 hits

Tracking efficiency

The Mu3e Experiment:New Physics in Different Places?

Phase I sensitivity

Simulated signal and background

Different signal branching ratios. Expected background sources.

Phase I sensitivity

Simulated sensitivity

Summary

Summary

- Search for $\mu^+ \rightarrow e^+ e^- e^+$
- Phase I sensitivity: 2 in 10¹⁵ decays

Status

- Technical design report submitted (January 2017)
- Detector R&D
- First prototype in 2017/2018

