



# Simulation of the performance of the scintillation fibres for the Mu3e experiment

Annual meeting of the swiss physical society 2014

Roman Gredig







#### Lepton Flavor Violating Decay

Search for the lepton flavor violating decay  $\mu^+ \to e^+ e^- e^+$ 

- lepton flavor not conserved
- we know it from neutrino oscillation
- but the charged leptons?







#### **Design Parameters**

- aimed sensitivity:  $\mathcal{B}(\mu \rightarrow eee) < 10^{-16}$  (first phase:  $10^{-15}$ ) (current limit:  $\mathcal{B}(\mu \rightarrow eee) < 10^{-12}$ , SINDRUM 1988)
- stopped muons per second:  $2 \cdot 10^9$  (first phase:  $2 \cdot 10^8$ )
- main background:  $\mu \rightarrow eee\nu_e\nu_\mu$ , with  $\mathcal{B} = 3.4 \cdot 10^{-5}$  and accidentals
- electron energies 0 53 MeV

We need:

- high vertex and time resolution:  $\mathcal{O}(100\,\mu m)$ ,  $\mathcal{O}(several 100\,ps)$ : combinatorial background
- momentum resolution  $\ll$  1 MeV:  $\mu \rightarrow eee \nu_e \nu_\mu$  background
- multiple scattering: thin detectors (< 50  $\mu$ m)





#### **Scintillating Fibres**

How to reach better time resolution

- time resolution goal:  $\mathcal{O}(\text{several } 100 \, \text{ps})$
- scintillating double cladding plastic fibres
- three to five layers
- used as detectors and light guides
- readout at both fibre ends with silicon photomultipliers (SiPM):  $\Rightarrow$  each fibre individually or column by
  - column
- fibre length: 36 cm
- fibre diameter: 250 µm
- about 4500 fibres



center module front view





## **Optical Simulation**

Simulation of:

- scintillating process
- light propagation
- SiPM detection at both ends of fibres

configurable:

- fibre shape
- roughness
- coating (e.g. TiO)
- stacking







#### **Optical Simulation**

**Photon Yield** 





# Mart

# Fibre Ribbon

how to stack the fibres?

- feasibility (mechanical)
- minimizing dead material
- simplify readout
- single fibre vs. column by column readout
- simulation of different scenarios
- example: crossing with mean angle ( $\sim 20^{\circ}$ )







# Fibre Ribbon

- feasibility (mechanical)
- minimizing dead material
- simplify readout
- single fibre vs. column by column readout
- simulation of different scenarios
- example: crossing with mean angle ( $\sim 20^\circ)$



photon distribution at ribbon end (integrated over 10 000 events)



![](_page_9_Picture_0.jpeg)

![](_page_9_Picture_2.jpeg)

#### **Photon Yield Parametrization**

speed up detector simulation

- simulation of the complete detector geometry
- individual photon tracks not interesting
- parametrization of the fibre simulation in combination with a SiPM response simulation [1]
- time resolution  $\approx$  400 ps
- photon yield depending on energy deposit and *z*-position of fibre (x, y-position only via dE/dx)
- keep only "measured" SiPM signals

[1] P. Eckert et al., JINST 7 (2012) P08011

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_2.jpeg)

#### Test Beam Hardware Development ETHZ, UniGe, UZH

- test beam campaign to verify simulation
- compare different ribbons
- evaluate amplifier electronics (electronics design heading for ASIC integration)
- modular design: different ribbon, sensors and amplifiers combinable
- multichannel readout (2x32 channels)
- readout with either waveform digitization or QDC/TDC

![](_page_10_Figure_10.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_2.jpeg)

#### Test Beam Hardware Development ETHZ, UniGe, UZH

- test beam campaign to verify simulation
- compare different ribbons
- evaluate amplifier electronics (electronics design heading for ASIC integration)
- modular design: different ribbon, sensors and amplifiers combinable
- multichannel readout (2x32 channels)
- readout with either waveform digitization or QDC/TDC

![](_page_11_Picture_10.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_2.jpeg)

#### Test Beam Hardware Development ETHZ, UniGe, UZH

![](_page_12_Picture_4.jpeg)

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_2.jpeg)

### **Conclusions and Outlook**

- simulation toolkit to understand fibres
- time resolution demands can be fulfilled
- modular framework to test ribbons prepared
- detailed analysis of ribbons needed  $\Rightarrow$  waiting for beam...
- final SiPM mask not decided yet

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_2.jpeg)

## Backup

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_2.jpeg)

#### **Detector Overview**

![](_page_15_Figure_4.jpeg)

- homogeneous magnetic field ( $\sim$  1 T)
- Al double cone to stop the muons
- Si pixel tracker
- scintillating fibres
- scintillation tiles