





# DC Muon Physics

Angela Papa, University of Pisa/INFN and Paul Scherrer Institut Virginia Tech, Blacksburg, USA

NUFACT 2018, August 12th - August 18th



### Content

- Introduction: The physics cases with DC muon beams
- The Most Intense DC Muon Beams in the World: Present and future prospects
- Overview of current experimental activities based on DC muon beams

 The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory



 Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

 The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory



 Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

- Two main strategies to unveil new physics
  - Indirect searches
  - Precision tests

- Two main strategies to unveil new physics
  - Indirect searches
  - Precision tests

### Charged lepton flavour violation search: Motivation





too small to access experimentally



**BSM** 

an experimental evidence: a clear signature of New Physics NP (SM background FREE)

 $\tilde{\chi}^0$ 

### Current upper limits on $\mathcal{B}_i$

 $\mu$ 



# Complementary to "Energy Frontier"

# Energy frontier Precision and intensity frontier $\psi_3 \qquad \psi_4 \qquad \tilde{\psi}_5 \qquad \text{Real BSM} \\ \text{particles} \qquad \psi_1 \qquad \psi_2 \qquad \text{Virtual BSM} \\ \text{particles} \qquad \psi_1 \qquad \psi_2 \qquad \psi_2 \qquad \psi_3 \qquad \psi_4 \qquad \text{Virtual BSM} \\ \text{particles} \qquad \psi_4 \qquad \psi_5 \qquad \psi_6 \qquad \psi_8 \qquad \psi_8 \qquad \psi_9 \qquad \psi_9$



Unveil new physics

Probe energy scale otherwise unreachable



### cLFV searches with muons: Status and prospects

In the near future impressive sensitivities:

|                       | Current upper limit     | Future sensitivity       |
|-----------------------|-------------------------|--------------------------|
| $\mu \to e \gamma$    | 4.2 x 10 <sup>-13</sup> | ~ 4 x 10 <sup>-14</sup>  |
| $\mu \rightarrow eee$ | 1.0 x 10 <sup>-12</sup> | ~1.0 x 10 <sup>-16</sup> |
| $\mu N \to e N'$      | 7.0 x 10 <sup>-13</sup> | < 10-16                  |

Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV





### cLFV searches with muons: Status and prospects

In the near future impressive sensitivities:

|                       | Current upper limit     | Future sensitivity       |
|-----------------------|-------------------------|--------------------------|
| $\mu \to e \gamma$    | 4.2 x 10 <sup>-13</sup> | ~ 4 x 10 <sup>-14</sup>  |
| $\mu \rightarrow eee$ | 1.0 x 10 <sup>-12</sup> | ~1.0 x 10 <sup>-16</sup> |
| $\mu N \to e N'$      | 7.0 x 10 <sup>-13</sup> | < 10-16                  |

Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV



### cLFV: "Effective" lagrangian with the k-parameter

 Due to the extremely-low accessible branching ratios, muon cLFV can strongly constrain new physics models and scales

### Model independent lagrangian





### cLFV searches with muons: Status and prospects

In the near future impressive sensitivities: Set at PSI

|                       | Future sensitivity      |                          |
|-----------------------|-------------------------|--------------------------|
| $\mu \to e \gamma$    | 4.2 x 10 <sup>-13</sup> | ~ 4 x 10 <sup>-14</sup>  |
| $\mu \rightarrow eee$ | 1.0 x 10 <sup>-12</sup> | ~1.0 x 10 <sup>-16</sup> |
| $\mu N \to e N'$      | 7.0 x 10 <sup>-13</sup> | < 10 <sup>-16</sup>      |

 $\mu = \mathbf{m_W}$ 

MEG (Br  $< 4.2 \cdot 10^{-13}$ )

SINDRUM (Br  $\leq 10^{-12}$ )

SINDRUM II (Br  $\leq 7 \cdot 10^{-13}$ )

Mu3e (Br  $\leq 5 \cdot 10^{-15}$ )

COMET (Br < 10<sup>-16</sup>)

10<sup>-8</sup> 10<sup>-7</sup> 10<sup>-6</sup> 10<sup>-5</sup> 10<sup>-4</sup>

10-2

10-3

10-4

10-6

10-8

MEG (Br  $< 4 \cdot 10^{-14}$ )

Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV



### Beam features vs experiment requirements

 Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities

beam ~ 108 - 1010 µ/s

DC or Pulsed?



- DC beam for coincidence experiments
  - $\mu \rightarrow e \gamma$ ,  $\mu \rightarrow e e e$

- Pulse beam for noncoincidence experiments
  - μ-e conversion





### Beam features vs experiment requirements

 Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities

lbeam ~ 108 - 1010 µ/s

DC or Pulsed?



- DC beam for coincidence experiments
  - $\mu \rightarrow e \gamma$ ,  $\mu \rightarrow e e e$

- Pulse beam for noncoincidence experiments
  - μ-e conversion





### The world's most intense continuous muon beam

- τ ideal probe for NP
   w. r. t. μ
  - Smaller GIM suppression
  - Stronger coupling
  - Many decays
- µ most sensitive probe
  - Huge statistics

- PSI delivers the most intense continuous low momentum muon beam in the world (Intensity Frontiers)
- MEG/MEG II/Mu3e beam requirements:
  - Intensity O(10<sup>8</sup> muon/s), low momentum p = 29 MeV/c
  - Small straggling and good identification of the decay



590 MeV proton ring cyclotron
1.4 MW

### **PSI** landscape



### The world's most intense continuous muon beam

PSI High Intensity Proton Accelerator experimental areas



# The MEGII (and Mu3e) beam lines

- MEGII and Mu3e (phase I) similar beam requirements:
  - · Intensity O(108 muon/s), low momentum p = 28 MeV/c
  - · Small straggling and good identification of the decay region
- · A dedicated compact muon beam line (CMBL) will serve Mu3e
- Proof-of-Principle: Delivered 8 x 10<sup>7</sup> muon/s during 2016 test beam

### The Mu3e CMBL



### The MEGII BL



- Aim: O(10<sup>10</sup> muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Strategy:
  - Target optimization
  - Beam line optimization
- Time schedule: **O(2025)**

- Back to standard target to exploit possible improvements towards high intensity beams:
  - Target geometry and alternate materials
    - Search for high pion yield materials -> higher muon yield

relative  $\mu^{+}$  yield  $\propto \pi^{+}$  stop density  $\cdot \mu^{+}$  Range  $\cdot$  length  $\propto n \cdot \sigma_{\pi^{+}} \cdot SP_{\pi^{+}} \cdot \frac{1}{SP_{\mu^{+}}} \cdot \frac{\rho_{C}(6/12)_{C}}{\rho_{x}(Z/A)_{x}}$   $\propto \frac{1}{Z^{2/3}}$ 



- Back to standard target to exploit possible improvements towards high intensity beams:
  - Target geometry and alternate materials
    - Search for high pion yield materials -> higher muon yield







- Aim: O(10¹⁰ muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam
- Slanted E target test ("towards the new M-target"): planned for next year



Aim: O(10<sup>8</sup> muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam



Aim: O(10<sup>8</sup> muon/s); Surface (positive) muon beam (p = 28 MeV/c); DC beam







- proton beam energy is only 100 MeV above pion production threshold ( $\sim 2 m_{\pi}$ )
- muon source with low proton power (1.1 uA ~0.4kW, 5 uA in future)

Multi-purpose facility. Beam line commissioning





### Status:

- Start experiments with negative and positive muons
- Muon capture and X-ray elemental analysis are in progress
- DC μSR study (still in commissioning for user experiments)



### The muCool project at PSI



- Aim: low energy high-brightness muon beam
- Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm
- Increase in brightness by a factor 10<sup>10</sup> with an efficiency of 10<sup>-3</sup>

### for:

μSR (solid state physics) muonium (spectroscopy, gravitational interaction...) muon experiments (µEDM, g-2...)



# Trajectories in E and B field + gas

E and B field





# Working principle: 1st Stage



### The muCool project at PSI: Status

- Separately longitudinal and transverse compression: PROVED
- Very good agreement between data and simulations











# The muCool project at PSI: Status

- 1st stage + 2nd stage
- Next Step: Extraction into vacuum





# The muCool project at PSI: Status



# DC and Pulsed muon beams - present and future



# DC and Pulsed muon beams - present and future

| Laboratory                                          | Beam Line                           | DC rate $(\mu/\text{sec})$                                                         | Pulsed rate $(\mu/\text{sec})$                                                               |
|-----------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| PSI (CH)<br>(590 MeV, 1.3 MW)                       | $\mu E4, \pi E5$<br>HiMB at EH      | $2 \div 4 \times 10^8 \; (\mu^+)$<br>$\mathcal{O}(10^{10}) \; (\mu^+) \; (>2018)$  |                                                                                              |
| J-PARC (Japan)<br>(3 GeV, 210 kW)<br>(8 GeV, 56 kW) | MUSE D-Line<br>MUSE U-Line<br>COMET |                                                                                    | $3 \times 10^{7} (\mu^{+})$ $6.4 \times 10^{7} (\mu^{+})$ $1 \times 10^{11} (\mu^{-})(2020)$ |
| FNAL (USA)<br>(8 GeV, 25 kW)                        | Mu2e                                |                                                                                    | $5 \times 10^{10} (\mu^{-})(2020)$                                                           |
| TRIUMF (Canada)<br>(500 MeV, 75 kW)                 | M13, M15, M20                       | $1.8 \div 2 \times 10^6 (\mu^+)$                                                   |                                                                                              |
| RAL-ISIS (UK)<br>(800 MeV, 160 kW)                  | EC/RIKEN-RAL                        |                                                                                    | $7 \times 10^4 (\mu^-)$<br>$6 \times 10^5 (\mu^+)$                                           |
| KEK (Tsukuba, Japan)<br>(500 MeV, 25 kW)            | Dai Omega                           |                                                                                    | $4 \times 10^5 (\mu^+)(2020)$                                                                |
| RCNP (Osaka, Japan)<br>(400 MeV, 400 W)             | MuSIC                               | $10^{4}(\mu^{-}) \div 10^{5}(\mu^{+}) 10^{7}(\mu^{-}) \div 10^{8}(\mu^{+})(>2018)$ |                                                                                              |
| JINR (Dubna, Russia)<br>(660 MeV, 1.6 kW)           | Phasotron                           | $10^5(\mu^+)$                                                                      |                                                                                              |
| RISP (Korea)<br>(600 MeV, 0.6 MW)                   | RAON                                | $2 \times 10^8 (\mu^+)(>2020)$                                                     |                                                                                              |
| CSNS (China)<br>(1.6 6eV, 4 kW)                     | HEPEA                               | $1 \times 10^8 (\mu^+)(>2020)$                                                     |                                                                                              |

# MEG: Signature, experimental setup and result

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C73 (2013) 2365

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C76 (2016) no. 8, 434

- The MEG experiment aims to search for  $\mu^+ \to e^+ \gamma$  with a sensitivity of ~10<sup>-13</sup> (previous upper limit BR( $\mu^+ \to e^+ \gamma$ )  $\leq 1.2 \times 10^{-11}$  @90 C.L. by MEGA experiment)
- Five observables (E<sub>g</sub>, E<sub>e</sub>, t<sub>eg</sub>,  $\theta_{eg}$ ,  $\varphi_{eg}$ ) to characterize  $\mu \rightarrow e\gamma$  events





Full data sample: 2009-2013
Best fitted branching ratio at 90% C.L.:

$$\mathcal{B}(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$$

### The MEGII experiment

New electronics: Wavedream

~9000 channels at 5GSPS

x2 Resolution everywhere

Updated and new Calibration methods

Quasi mono-

Quasi monochromatic positron beam



### Where we will be





# Where we are: Full engineering run in preparation



# Mu3e: The $\mu^+ \rightarrow e^+ e^+ e^-$ search

- The Mu3e experiment aims to search for  $\mu^+ \to e^+ e^-$  with a sensitivity of ~10<sup>-15</sup> (Phase I) up to down ~10<sup>-16</sup> (Phase II). Previous upper limit BR( $\mu^+ \to e^+ e^+ e^-$ )  $\leq$  1 x 10<sup>-12</sup> @90 C.L. by SINDRUM experiment)
- Observables (E<sub>e</sub>, t<sub>e</sub>, vertex) to characterize µ→ eee events



# The Mu3e experiment: Schematic 3D





### The Mu3e experiment: R&D completed. Prototyping phase



# The role of the low energy precision physics

- Two main strategies to unveil new physics
  - Indirect searches
  - Precision tests

R. Pohl at al., Nature 466 (2010) 213A. Antognini et al., Science 339 (2013) 417R. Pohl et al., Science 353 (2016) 669

# Spectroscopy of muonic atoms

- Strong interplay between atomic physics and particle/nuclear physics
- Enhanced sensitivity for  $\mu p$  due to strong overlap of muon wave-function with the nucleus (m $_{\mu}$  ~ 200 m $_{e}$ )



# Spectroscopy of muonic atoms

- Strong interplay between atomic physics and particle/nuclear physics
- Enhanced sensitivity for  $\mu p$  due to strong overlap of muon wave-function with the nucleus (m $_{\mu}$  ~ 200 m $_{e}$ )
- The proton radius puzzle: μp result: rp 4% smaller (6.7 σ) and 10 times more accurate



# Principle of the µp 2S-2P experiment

Measure 2S-2P splitting (20 ppm) and compare with theory → proton radius

 $\Delta E_{2P-2S}^{\rm th} = 206.0336(15) - \frac{5.2275(10)}{r_{\rm p}^2} + 0.0332(20) \text{ [meV]}$ 

Produce many  $\mu$ - at keV energy

Form  $\mu p$  by stopping  $\mu^-$  in 1 mbar H<sub>2</sub> gas

Fire laser to induce the 2S-2P transition

Measure the 2 keV X-rays from 2P-1S decay







## The experimental setup

· A low energy muon beam line / laser system / target and detectors



A. Beyer et al. Science 358 (6359), 79-85W. Vassen, Science 358 (6359), 39-40H. Fleurbaey et al., Phys. Rev. Lett.120, 183001 (2018)

### Proton radius revisited

Hydrogen spectroscopy brings a surprise in the search for a solution to a long-standing puzzle





C. Gu's talk: Thur. WG4 group

## The MUSE experiment: Motivations

Can we attack the proton-size puzzle from a different side?



## The MUSE experiment: Motivations

Can we attack the proton-size puzzle from a different side?



# The MUSE experiment: Ready for the physics run

Beam line: piM1@PSI



 $θ \approx 20^{\circ} - 100^{\circ}$   $Q^{2} \approx 0.002 - 0.07 \text{ GeV}^{2}$ 3.3 MHz total beam flux  $\approx 2 - 15\% \text{ } \mu\text{'s}$   $\approx 10 - 98\% \text{ e's}$   $\approx 0 - 80\% \text{ } \pi\text{'s}$ 



S. Strauch's talk: Thur. WG4 group





# The MUSE experiment: Towards the physics run

Beam line: piM1@PSI



## Muonium: A precision tool in atomic and particle physics



### Muonium (Mu)

- hydrogen-like exotic atom
- ▶ pure leptonic system (1st and 2nd gen.)
- ▶ no finite size / nuclear effects

## Muonium: A precision tool in atomic and particle physics



### Muonium (Mu)

- hydrogen-like exotic atom
- pure leptonic system (1st and 2nd gen.)
- ▶ no finite size / nuclear effects
- ▶ Precision spectroscopy: test of bound-state QED, fundamental constants:  $m_{\mu}$ ,  $R_{\infty}$ ,  $m_{\mu}/m_p$ ,  $q_{\mu}/q_e$ ...
- Mu antiMu
  - ▶ Charged lepton number violation
- ▶ Mu gravity experiment?
  - ▶ test of weak equivalence principle on μ<sup>+</sup>:
    - ▶ elementary antiparticle
    - second generation lepton

### Needed: A 'cold' Mu source



- Large (thermal) energy spread
- ▶ Broad angular distribution ( $\sim$ cos $\theta$ )
- ▶ 3-30 % conversion efficiency at T=296 K

#### Needed: a `cold' Mu source

▶ Low emittance, narrow energy distribution, large Mu number



▶ cooling conventional samples: almost no Mu emission below 100 K (decreased velocities, and atoms sticking to the pore walls)



## Cold Mu production

 Proposal: Mu production in superfluid helium (SFHe)







A. Soter's talk: This afternoon WG4 group

#### Needed: a `cold' Mu source

▶ Low emittance, narrow energy distribution, large Mu number



cooling conventional samples: almost no Mu emission below 100 K (decreased velocities, and atoms sticking to the pore walls)

### Outlooks

- Continuous and intense low energy muon beams (I~ 10<sup>8</sup> muon/s, 1.4 MW) plays a crucial role for particle, nuclear and atomic physics
  - via indirect searches and precision measurements
- While experiments hunger after even more muons the developments of next generation proton drivers with beam powers in excess of **few MW** still requires significant research and development
  - The attention has turned to the optimization of existing target stations and beam lines and the exploration of novel target ideas
    - i.e. HiMB at PSI aiming at (I~ 10<sup>10</sup> muon/s)
    - i.e. MuSIC at RCNP aiming at (I~ 108 muon/s 400W)
- New ideas about
  - High brightness low energy beam line (tertiary beam line): MuCool at PSI (D< 1mm, E</li>
     eV, phase space improvement: 10<sup>10</sup>, efficiency: 10<sup>-3</sup>)
  - Cold muonium production

# Acknowledgments

- Thanks a lot for your attentions
- Credits: A. Antognini, I. Belosevic, F. Berger, E. J.
   Downie, P.-R. Kettle, A. Knecht, Y. Kuno, S. Mihara, D.
   Tomono, A. Soter, F. Wauters

### Questions from conveners

Color code: (



## Focus questions for WG4:

Q1: Neutrino/Muon Physics: (Overlaps with WG1 and WG5)

- What overlaps exist to non-standard model neutrino interactions?
- How would these manifest in both the near term muon/precision measurements sector
   & in the neutrino sector?

#### Q2: Beam/Machine/Detector Design: (Overlaps with WG3)

- Are the ultimate sensitivities really exploited with current facilities?
- How can we improve experiments without increasing the beam power?
- What will be the ultimate sensitivity that we can reach even by increasing beam power, and what are its implications?
- Cooled muon beams w/ phase rotations? New methods?

#### Q3: Program Planning: (Overlaps with WG3)

- How do you support the physics needs for both DC and pulsed (high sculpted) beam structures in the planning (and cost) of new facilities?
- How can muon physics benefit from future neutrino facilities?
- Could new ideas from muon physics developments turn out to be useful for future neutrino facilities?

### Questions from conveners

Q2: Beam/Machine/Detector Design: (Overlaps with WG3)

- Are the ultimate sensitivities really exploited with current facilities?
- How can we improve experiments without increasing the beam power?
- What will be the ultimate sensitivity that we can reach even by increasing beam power, and what are its implications?
- Cooled muon beams w/ phase rotations? New methods?

# Back-up

# How the sensitivity can be pushed down?

More sensitive to the signal...



More effective on rejecting the background...

$$B_{acc} \sim R \times \Delta E_{e} \times (\Delta E_{gamma})^{2} \times \Delta T_{egamma} \times (\Delta \Theta_{egamma})^{2}$$

$$Positron Energy Fining Fining timing ti$$

### Proton radius revisited

· Hydrogen spectroscopy brings a surprise in the search for a solution to a long-standing puzzle



### Proton radius revisited

· Hydrogen spectroscopy brings a surprise in the search for a solution to a long-standing puzzle



## Muonium: A precision tool in atomic and particle physics



### Muonium (Mu)

- hydrogen-like exotic atom
- pure leptonic system (1st and 2nd gen.)
- ▶ no finite size / nuclear effects

#### Mu 1s-2s and HFS spectroscopy

- ▶ test of bound-state QED
- fundamental constants:
   m<sub>μ</sub>, R<sub>∞</sub>, m<sub>μ</sub>/m<sub>p</sub>, q<sub>μ</sub>/q<sub>e</sub>...
- ▶ fundamental symmetries

#### Muonium - antimuonium

put limits on the charged lepton number violation

## Muonium: A precision tool in atomic and particle physics



### Muonium (Mu)

- hydrogen-like exotic atom
- pure leptonic system (1st and 2nd gen.)
- ▶ no finite size / nuclear effects

#### Mu 1s-2s and HFS spectroscopy

- ▶ test of bound-state QED
- ▶ fundamental constants:  $m_{\mu}$ ,  $R_{\infty}$ ,  $m_{\mu}/m_{p}$ ,  $q_{\mu}/q_{e}$ ...
- ▶ fundamental symmetries

#### Muonium - antimuonium

put limits on the charged lepton number violation

#### Mu gravity experiment?

μ<sup>+</sup> : elementary antiparticle from the second generation

- complementary to the composite antimatter (antihydrogen) gravity experiments @ CERN
- unique possibility to compare gravity (test weak eq.princ.) in lepton generations

## Cold Mu production



Standard beam



#### Needed: a `cold' Mu source

▶ Low emittance, narrow energy distribution, large Mu number



▶ cooling conventional samples: almost no Mu emission below 100 K (decreased velocities, and atoms sticking to the pore walls)

# Spectroscopy of muonic atoms

- Strong interplay between atomic physics and particle/nuclear physics
- Three ways to measure the proton charge radius: electron proton scattering, laser spectroscopy of hydrogen, laser spectroscopy of muonic hydrogen ( $\mu$ p)
- •enhanced sensitivity for  $\mu$ p due to strong overlap of muon wave-function with the nucleus (m $_{\mu}$  ~ 200 m $_{e}$ )
- The proton radius puzzle
  - $\mu$ p result:  $r_p$  4% smaller (7.9  $\sigma$ ) and 10 times more accurate



# Impact of the muonic atoms



### Proton radius until 2013

Hydrogen spectroscopy and scattering, muonic atom spectroscopy



### Proton radius revisited

· Hydrogen spectroscopy brings a surprise in the search for a solution to a long-standing puzzle



# Future prospects: A first thought

μ+ -> e+ γ at the highest muon beam intensities: Calorimetry vs gamma conversion + tracking



- High detection efficiency (calorimetry) vs better energy resolution (conversion+tracking)
- For a given detector the optimum R is that corresponding to negligible (no more than few) background events over the running time
- At very high rate the low efficiency of the conversion can be compensated keeping the background under control thanks to the better resolutions

# Future prospects: A first thought



## $g_{\mu}$ -2: Motivation

- Dirac's relativistic theory predicted muon magnetic moment "g" = 2
- Experiment suggested that g-factor differs from the expected value of 2
- Standard Model prediction: a(SM) = a(QED) + a(Had) + a (Weak) + a (NP)
- BNL E821 result: 3.3σ deviation from SM prediction



### g<sub>µ</sub>-2 in numbers and experimental approaches

Anomalous magnetic moment (g-2)

$$a_{\mu}$$
= (g-2)/2 = 11 659 208.9 (6.3) x 10<sup>-10</sup> (BNL E821 exp) **0.5 ppm**

$$\Delta a_{\mu} = Exp - SM = 26.1 (8.0) x 10^{-10}$$
 3 $\sigma$  anomaly

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2=0

$$\vec{\omega} = -\frac{e}{m} \left[ a_{\mu} \vec{B} - \left( a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left( \vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL E821 approach  $\gamma$ =30 (P=3 GeV/c)

J-PARC approach E = 0 at any  $\gamma$ 

$$\vec{\omega} = -\frac{e}{m} \left[ a_{\mu} \vec{B} + \frac{\eta}{2} \left( \vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right] \qquad \vec{\omega} = -\frac{e}{m} \left[ a_{\mu} \vec{B} + \frac{\eta}{2} \left( \vec{\beta} \times \vec{B} \right) \right]$$

Continuation at **FNAL** with **0.1ppm** precision

Proposed at **J-PARC** with **0.1ppm** precision

# $g_{\mu}$ -2/EDM at J-PARC

- Put E = 0;
- Weak B field focusing: Need low emittance cold muon
- Uniform tracker detector throughout stored orbit

$$-rac{q}{m_{\mu}}\left[a_{\mu}ec{B}-\left(a_{\mu}-rac{1}{\gamma^{2}-1}
ight)$$



# The muCool project at PSI: Status

- 1st stage + 2nd stage
- Next Step: Extraction into vacuum





## MEG: The key elements

1. The world's intense low momentum muon beam stopped in a thin and slanted target

2. The gradient field e+-spectrometer

3. The innovative Liquid Xenon calorimeter

4. The full waveform based DAQ (digitization up to 1.6 GSample/s)

5. Complementary calibration and monitoring methods



## MEG: The key elements

1. The world's intense low momentum muon beam stopped in a thin and slanted target

2. The gradient field e+-spectrometer

3. The innovative Liquid Xenon calorimeter

4. The full waveform based DAQ (digitization up to 1.6 GSample/s)

5. Complementary calibration and monitoring methods



### MEG: The spectrometer



- Low momentum positrons swept away without hitting the chambers
- Projected radius independent of the emission angle
- Very low material budget (~ 2 10-3 X<sub>0</sub>)
- High momentum resolution ( $\sigma_p \sim 315$  keV/c), angular resolutions ( $\sigma_{\phi} \sim 7.5$  mrad ,  $\sigma_{\theta} \sim 10.6$  mrad) and timing resolution ( $\sigma_t \sim 100$  ps) never reached up to now with a single detector at 52.8 MeV!



#### MEG: The LXe calorimeter

- High detection efficiency (High Z/ Low X<sub>0</sub>)
- High energy, timing and position resolutions (High LY, Fast time constants, High density, High photosensor coverage)
- Purity < 1 ppm and stable conditions over the time
- Particle ID
- Energy ( $\sigma_E$  /E <2.5%) and timing resolutions( $\sigma_t$  < 70 ps) never reached up to now with a single detector at 52.8 MeV!





- Volume: 0.9 m<sup>3</sup> LXe
- 846 PMTs immersed in LXe
- thin entrance wall (honeycombe structure)
- Photocathodic coverage 40%
- Solid angle coverage 10% of  $4\pi$
- $-X_0 = 2.77$  cm
- density =  $2.95 \text{ g/cm}^3$
- -n = 1.65
- -Z = 54
- $-R_{M} = 4.1 cm$
- -LY = 40000 ph/MeV
- Time constants = 4, 22 and 45 ns
- Particle Identification

# MEG: The Data Acquisition (DAQ)

- · Flexible and efficient trigger system, to select the candidate events, using fast detectors only
  - FADC digitization at 100 MHz
  - online selection algorithms implemented into FPGAs
- Domino Ring Sampler (DRS) chip for excellent pile-up rejection and timing resolutions with a full waveform digitization (> 100 MHz)
  - · all 1000 PMTs signals (LXe and TC) digitize at 1.6 GSample/s
  - · all 3000 DC channels (anodes and cathodes) digitize at 800 MSample/s





#### MEG: The calibration methods

 Multiple calibration and monitoring methods: detector resolution and stability are the key points in the search for rare events over the background

| Process           |                                                  | Energy (MeV) | Frequency |
|-------------------|--------------------------------------------------|--------------|-----------|
| CEX reaction      | $p(\pi^-, \pi^0)n, \pi^0 \to \gamma\gamma$       | 55, 83       | annually  |
| C-W accelerator   | $^{7}{ m Li}(p,\gamma_{17.6})^{8}{ m Be}$        | 17.6         | weekly    |
|                   | $^{11}B(p, \gamma_{11.6})^{12}C$                 | 4.4&11.6     | weekly    |
| Neutron Generator | $^{58}\mathrm{Ni}(n,\gamma_{9})^{59}\mathrm{Ni}$ | 9            | daily     |
| Mott Positrons    | $p(e^+, e^+)p$                                   | 53           | annually  |
|                   |                                                  | 53           |           |











#### MEG: The calibration methods

 Multiple calibration and monitoring methods: detector resolution and stability are the key points in the search for rare events over the background

| Process           |                                                | Energy (MeV) | Frequency |
|-------------------|------------------------------------------------|--------------|-----------|
| CEX reaction      | $p(\pi^-, \pi^0)n, \pi^0 \to \gamma\gamma$     | 55, 83       | annually  |
| C-W accelerator   | $^{7}{\rm Li}(p,\gamma_{17.6})^{8}{\rm Be}$    | 17.6         | weekly    |
|                   | $^{11}B(p, \gamma_{11.6})^{12}C$               | 4.4&11.6     | weekly    |
| Neutron Generator | $^{58}\mathrm{Ni}(n,\gamma_9)^{59}\mathrm{Ni}$ | 9            | daily     |
| Mott Positrons    | $p(e^+, e^+)p$                                 | 53           | annually  |











### cLFV search landscape



BESIII, Beijing

# cLFV best upper limits

| Process               | Upper limit             | Reference                    | Comment    |
|-----------------------|-------------------------|------------------------------|------------|
| μ+ -> e+ γ            | 4.2 x 10 <sup>-13</sup> | arXiV:1605.05081             | MEG        |
| µ+ -> e+ e+ e-        | 1.0 x 10 <sup>-12</sup> | Nucl. Phy. B299 (1988) 1     | SINDRUM    |
| μ- N -> e- N          | 7.0 x 10 <sup>-13</sup> | Eur. Phy. J. c 47 (2006) 337 | SINDRUM II |
| τ -> e γ              | 3.3 x 10 <sup>-8</sup>  | PRL 104 (2010) 021802        | Babar      |
| τ -> μ γ              | 4.4 x 10 <sup>-8</sup>  | PRL 104 (2010) 021802        | Babar      |
| T> e- e+ e-           | 2.7 x 10 <sup>-8</sup>  | Phy. Let. B 687 (2010) 139   | Belle      |
| τ> μ- μ+ μ-           | 2.1 x 10 <sup>-8</sup>  | Phy. Let. B 687 (2010) 139   | Belle      |
| τ> μ+ e- e-           | 1.5 x 10 <sup>-8</sup>  | Phy. Let. B 687 (2010) 139   | Belle      |
| Z -> μ e              | 7.5 x 10 <sup>-7</sup>  | Phy. Rev. D 90 (2014) 072010 | Atlas      |
| Z-> μ e               | 7.3 x 10 <sup>-7</sup>  | CMS PAS EXO-13-005           | CMS        |
| Η -> τ μ              | 1.85 x 10 <sup>-2</sup> | JHEP 11 (2015) 211           | Atlas (*)  |
| Η -> τ μ              | 1.51 x 10 <sup>-2</sup> | Phy. Let. B 749 (2015) 337   | CMS        |
| K <sub>L</sub> -> μ e | 4.7 x 10 <sup>-12</sup> | PRL 81 (1998) 5734           | BNL        |

New electronics:

Wavedream

~9000 channels at 5GSPS

COBRA





 >1000 channels available for the incoming 2017 pre-engineering run

 For SiPM: bias voltage, pre-amp and shaping included

(RDC)

Pixelated timing counter (pTC)

Muon stopping target

rical drift chamber (CDCH)

Liquid xenon photon detector

(LXe) Better uniformity w/ 12x12 VUV SiPM



- 900 LXe
- ~ 4000 Photosensors = SiPM and PMT directly immersed in the Xe
- Construction and assembly completed
- Commissioning phase started (with reduced number of electronics channels)



- Low material budget detector: < 0.0016 X<sub>0</sub>
- In construction (Assembly: 70%, wiring: 80%)
- Mock-up installed in Cobra
- Gas system: commissioning phase

Radiative decay counter (RDC)

Pixelated timing counter (pTC)

Muon stopping target

Cylindrical drift chamber (CDCH)

Single
volume
He:iC<sub>4</sub>H<sub>10</sub>



Radiative decay counter (RDC)

- 2 x 256 of BC422 scintillator plates (120 x 40 (or 50) x 5 mm³) readout by AdvanSiD SiPM ASD-NUM3S-P-50-High-Gain
  - Full detector: Commissioning phase





Updated and new Calibration methods

Quasi monochromatic positron beam

- MC BCF12 250 x 250 um<sup>2</sup> scintillating fibers + MPPC S13360-3050C
- Commissioning: pre-engineering run 2016
- Movable configuration: in preparation

# $\mu$ - N $\rightarrow$ e- N experiments

$$R_{\mu e} = rac{\mu^- + A(Z,N) o e^- + A(Z,N)}{\mu^- + A(Z,N) o 
u_\mu + A(Z-1,N)}$$

- Signal of mu-e conversion is single mono-energetic electron
- Backgrounds:
  - Beam related, Muon Decay in orbit, Cosmic rays
- Stop a lot of muons! O(10<sup>18</sup>)
- Use timing to reject beam backgrounds (extinction factor 10<sup>-10</sup>)
  - Pulsed proton beam 1.7 µs between pulses
  - · Pions decay with 26 ns lifetime
  - · Muons capture on Aluminum target with 864 ns lifetime
- Good energy resolution and Particle ID to defeat muon decay in orbit
- Veto Counters to tag Cosmic Rays





## The Mu2e experiment

- Three superconducting solenoids: Production, Transport and Detector solenoids
- Muons stop in thin aluminum foils
- High precision straw tracker for momentum measurement
- Electromagnetic calorimeter for PID
- Scintillators for the Veto



# The COMET experiment

Stage phase approach: ultimate sensitivity with phase II [Data taking in: 2021/2022]

