A Novel $\mu \rightarrow$ eee Experiment

André Schöning

Sebastian Bachmann, Rohin Narayan

Institute of Physics University of Heidelberg

Seminar

University Heidelberg April 19th, 2011

Andre Schöning, PI Heidelberg

Shifting Stones in the Sierra Nevada

Shifting Stones in the Sierra Nevada

Shifts were never directly seen (like charged lepton flavor violation)

History

G.Feinberg, P.Kabir, S.Weinberg, PRL 3 527 (1959)

"Absence of:

• Br $(\mu \rightarrow e \gamma)$ • Br $(\mu \rightarrow eee)$ • Br $(\mu N \rightarrow eN)$

does not constitute a paradox there being no compelling reason why muons should transform into electrons, but it seems a **mystery** that processes which are allowed energetically and in every other known respect do not occur..."

History

G.Feinberg, P.Kabir, S.Weinberg, PRL 3 527 (1959)

"Absence of:

- Br $(\mu \rightarrow e \gamma)$ • Br $(\mu \rightarrow eee)$ • Br $(\mu N \rightarrow eee)$
- Br ($\mu N \rightarrow eN$)

does not constitute a paradox there being no compelling reason why muons should transform into electrons, but it seems a **mystery** that processes which are allowed energetically and in every other known respect do not occur..."

Introduction of lepton flavor quantum number

Standard Model: $\mu \rightarrow e \overline{\nu}_e \nu_\mu$

Discovery of Neutrino Oscillations

- solar neutrinos
- reactor neutrinos
- atmospheric neutrinos
- neutrino beams

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2(2\theta) \sin^2(1.2 \,\mathbb{Z} \,m_{\alpha\beta}^2 \frac{L}{E})$$

"Feinberg Kabir and Weinberg were wrong!"

(c) Kamioke Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo

Overview

- Introduction to Lepton Flavor Violation
- Motivation to Search for $\mu \rightarrow eee$
- Backgrounds and Past Experiments
- (Novel) Detector Concept and Design
- Simulation Studies
- Summary

Quarks

Cabibbo Kobayashi Maskawa (CKM)

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{\iota d} & V_{\iota s} & V_{\iota b} \\ V_{\alpha d} & V_{\alpha s} & V_{\alpha b} \\ V_{t d} & V_{t s} & V_{t b} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

9

- W bosons smell different flavors!
- other gauge bosons (γ , Z, g) do not (\rightarrow no FCNC)

- W bosons smell different flavors!
- other gauge bosons (γ , Z, g) do not (\rightarrow no FCNC)

Andre Schöning, PI Heidelberg

11

Family Number Violation

- Flavor Changing neutral currents are forbidden!
- Lepton Flavor Number in Charged Currents is an "adhoc" concept

quark flavor not conserved (family number changes)

lepton flavor not conserved but difficult to observe!

(concept of families right?)

12

Lepton Mixing, LFV and FCNC

U = Neutrino Mixing Matrix

W = Ch. Lepton Mixing Matrix

$$\begin{pmatrix} \mathbf{e} \\ \mu \\ \tau \end{pmatrix} = \begin{pmatrix} w_{el} & w_{e2} & w_{e3} \\ w_{\mu 1} & w_{\mu 2} & w_{\mu 3} \\ w_{\tau 1} & w_{\tau 2} & w_{\tau 3} \end{pmatrix} \begin{pmatrix} l_1 \\ l_2 \\ l_3 \end{pmatrix}$$

weak eigenstates mass

mass

Charged Current: PMNS matrix: $V_{ki} = \sum_{\alpha=1}^{5} W_{\alpha k}^{l^*} U_{\alpha i}^{\nu}$ only product measurable

-product of lepton and neutrino mixing matrices (\rightarrow flavor changing)

Neutral Current:

unit matrix: <u>1</u>:

$$= \sum_{\alpha=1}^{3} U_{\alpha k}^{\nu^{*}} U_{\alpha i}^{\nu} = \sum_{\alpha=1}^{3} W_{\alpha k}^{l^{*}} W_{\alpha k}^{\nu}$$

- unitary lepton and neutrino mixing matrices (\rightarrow flavor conserving)

Higher Order!

 $\mu \rightarrow e \gamma$

Higher Order!

 $\mu \rightarrow e \gamma$

Andre Schöning, PI Heidelberg 15

Higher Order!

$$\tau \rightarrow \mu \gamma$$

Higher Order!

 $\mu \rightarrow e \gamma$

 $\tau \rightarrow e \gamma$

LFV in generated from lepton mixing:

$$BR(l_{j} \rightarrow l_{k} \gamma) \propto \left| \sum_{i} V_{ij} V_{jk}^{*} \frac{m_{\nu_{i}}^{2}}{M_{W}^{2}} \right|^{2} \sim \left| \frac{\Delta m_{\nu_{jk}}^{2}}{M_{W}^{2}} \right|^{2}$$

GIM – like suppression: ~ 10⁻⁵⁰
 \rightarrow unobservable

 \rightarrow high sensitivity to new physics!!!

<u>c.t. quark mixing:</u> → FCNC in SM ~ 10^{-10}

$$\left(\frac{\Delta m_{c-u}^2}{M_W^2}\right)^2 \sim 10^{-7}$$

Searches of Lepton[±] Flavor Violation

Searches of Lepton[±] Flavor Violation

The MEG Experiment

MEG Preliminary

MEG, ICHEP 2010

first indication of lepton flavor violation in muon decays?

Experimental LFV Results

 $\begin{array}{l} \textbf{Purely Leptonic LFV:}\\ \bullet \ \textbf{Br}(\mu \rightarrow e \ \gamma) < 10^{-11} \quad [\textbf{MEGA}] \\ & \rightarrow 10^{-13} \quad \textbf{MEG} \end{array} \\ \bullet \ \textbf{Br}(\tau \rightarrow \mu(e) \ \gamma) < \sim 4 \cdot 10^{-8} \quad (B\text{-factories}) \\ \bullet \ \textbf{Br}(\mu \rightarrow eee) < 10^{-12} \quad [\textbf{SINDRUM}] \\ & \rightarrow 10^{-16} \quad \text{this talk} \end{array}$

• Br($Z \to e\mu$) < 10⁻⁶ [LEP]

Semihadronic LFV:

- Br(K $\rightarrow \pi \mu e$) < $\approx 10^{-11}$
- Br(μ_{capt} N \rightarrow eN) < ~ 10⁻¹² [SINDRUM2] \rightarrow 10⁻¹⁷ Mu2e, Prism
- $\mu N \rightarrow eN'$ or $eN \rightarrow \mu(\tau)N'$ (DIS HERA):

Experimental LFV Results

 $\begin{array}{l} \hline Purely \ Leptonic \ LFV: \\ \bullet \ Br(\mu \rightarrow e \ \gamma) < 10^{-11} \quad [MEGA] \\ & \rightarrow 10^{-13} \quad MEG \end{array}$

• Br($\mu \rightarrow eee$) < 10⁻¹² [SINDRUM] \rightarrow 10⁻¹⁶ this talk

Semihadronic LFV:

• Br(μ_{capt} N \rightarrow eN) < ~ 10⁻¹² [SINDRUM2] \rightarrow 10⁻¹⁷ Mu2e, Prism

Experimental LFV Results

Purely Leptonic LFV: • Br($\mu \rightarrow e \gamma$) < 10⁻¹¹ [MEGA] $\rightarrow 10^{-13}$ MEG

• Br($\mu \rightarrow eee$) < 10⁻¹² [SINDRUM] \rightarrow 10⁻¹⁶ this talk

Semihadronic LFV:

• Br(μ_{capt} N \rightarrow eN) < ~ 10⁻¹² [SINDRUM2] \rightarrow 10⁻¹⁷ Mu2e, Prism

LFV in SUSY SO(10) GUT

Andre Schöning, PI Heidelberg

cMSSM Seesaw with Leptogenesis

SUSY SPS 1a

require successfull BAU (baryon asymmetry in universe)

BIG BANG SCALE ASYMMETRY Seems to be a big difference AITH MATTER

sensitivity to heavy Majorana Neutrino Masses

cMSSM Seesaw with Leptogenesis

 $\sin^2 \Theta_{13} < 0.057 (PDG)$

Motivation to Search for $\mu^{\scriptscriptstyle +} \to e^{\scriptscriptstyle +} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}$

Effective Model for $\mu^+ \rightarrow e^+e^+e^-$

Effective charged LFV Lagrangian (Y. Kuno and Y Okada):

Tensor terms (dipole)

$$L_{\mu \to eee} = \frac{4G_F}{2} \left[m_\mu A_R \overline{\mu}_R \sigma^{\mu\nu} e_L F_{\mu\nu} + m_\mu A_L \overline{\mu}_L \sigma^{\mu\nu} e_R F_{\mu\nu} \right]$$

e.g. Supersymmetry

Effective Model for $\mu^+ \rightarrow e^+e^+e^-$

Effective charged LFV Lagrangian (Y. Kuno and Y Okada):

e.g. Higgs, Z', Doubly Charged Higgs

Testing new Mass Scales

Andre Schöning, PI Heidelberg

Testing new Mass Scales

Effective cLFV Lagrangian:

$$L = \frac{m_{\mu}}{\Lambda^2 (1+\kappa)} H^{dipole} + \frac{\kappa}{\Lambda^2 (1+\kappa)} J_{\nu}^{e\mu} J^{\nu,ee}$$

 Almost factor 2 higher mass reach beyond MEG for LFV dipole couplings (Λ = 4 · 10³ TeV)

> "André de Gouvêa" plot for μeee

Testing new Mass Scales

Effective cLFV Lagrangian:

$$L = \frac{m_{\mu}}{\Lambda^2 (1+\kappa)} H^{dipole} + \frac{\kappa}{\Lambda^2 (1+\kappa)} J_{\nu}^{e\mu} J^{\nu,ee}$$

- Almost factor 2 higher mass reach beyond MEG for LFV dipole couplings (Λ = 4 · 10³ TeV)
- x 10 mass reach beyond SINDRUM for LFV four-fermion couplings (Λ = 2 · 10³ TeV)

"André de Gouvêa" plot for μeee

Predictions: $\mu \rightarrow eee versus \mu \rightarrow e\gamma$

• In case of dominating LFV dipole couplings $\kappa = 0$ (A_{LR} >> g_i)

 $\frac{B(\mu \to eee)}{B(\mu \to e\gamma)} \approx 0.006$

B(μ→eee)=10⁻¹⁵ corresponds to B(μ→eγ)=~10⁻¹³ B(μ→eee)=10⁻¹⁶ corresponds to B(μ→eγ)=~10⁻¹⁴

dipole coupling

Predictions: $\mu \rightarrow eee \ versus \ \mu \rightarrow e\gamma$

• In case of dominating LFV dipole couplings $\kappa = 0$ (A_{LR} >> g_i)

 $\frac{B(\mu \to eee)}{B(\mu \to e\gamma)} \approx 0.006$

B($\mu \rightarrow eee$)=10⁻¹⁵ corresponds to B($\mu \rightarrow e\gamma$)=~10⁻¹³ B($\mu \rightarrow eee$)=10⁻¹⁶ corresponds to B($\mu \rightarrow e\gamma$)=~10⁻¹⁴

Specific Models

Predictions	$B(\mu \rightarrow eee) \ / \ B(\mu \rightarrow \ e\gamma)$	$B(\mu \to eee)$
mSUGRA + seesaw	~10-2	<10 ⁻¹³
SUSY + SO(10)	~10 ⁻²	< 10 ⁻¹³
SUSY + Higgs	~10-2	< 10 ⁻¹³
Z', Kaluzza Klein	>1	
Little Higgs	0.1 - 1	< 10 ⁻¹³
Higgs Triplet	10 ⁻³ - 10 ⁺³	< 10 ⁻¹²

Higgs Triplet Models

CP Violation in $\mu \rightarrow eee$

- Measurement of CP violation requires interference of diagrams
- 3-body decay kinematics allows for study of discrete symmetries!

(can also distinguish e.g. SU(5) from SO(10) models)

 \vec{p}_{1}

Motivation for $\mu^+ \rightarrow e^+e^+e^-$ Search I

New Particles at the "Terascale" naturally induce LFV

$\frac{\Delta_M^2}{M^2}\Big|^2$

• Search $\mu^+ \rightarrow e^+e^+e^-$ is complementary to other LFV searches

Motivation for $\mu^+ \rightarrow e^+e^+e^-$ Search II

 Advances in detector technologies allow for high rate / high precision experiments at low energies

- Plans to improve PSI beamlines and targets: > 10⁹ muon stops/s
 - would allow to test muon decay branching ratios at 10⁻¹⁶
 - → current exp. limit $B(\mu^+ \rightarrow e^+e^+e^-)=10^{-12}$ (Bellgard 1988)

Motivation for $\mu^+ \rightarrow e^+e^+e^-$ Search II

 Advances in detector technologies allow for high rate / high precision experiments at low energies

- Plans to improve PSI beamlines and targets: > 10⁹ muon stops/s
 - would allow to test muon decay branching ratios at 10⁻¹⁶
 - → current exp. limit $B(\mu^+ \rightarrow e^+e^+e^-)=10^{-12}$ (Bellgard 1988)

• A search for $B(\mu^+ \rightarrow e^+e^+e^-) > 10^{-16}$ has a large potential to find

LFV signal or to set very stringent bounds on new physics

Backgrounds and Previous Experiments

Backgrounds for $\mu^+ \rightarrow e^+e^+e^-$

Combinatorial Background (Pile up):

- Two muon decays $2 \times (\mu^+ \rightarrow e^+ \nu \nu)$ and one fake e^- (wrong charge: reconstrution, Bhabha, back-curling $e^+ \rightarrow e^-$)
- → Radiative decay with internal conversion $\mu \rightarrow (e^+) e^+e^- \nu \nu$ and muon decay $\mu^+ \rightarrow e^+\nu \nu$
- Combinatorial BG can be largely reduced by imposing
 - timing vetos
 - kinematic constraints
 - vertex requirements

Backgrounds for $\mu^+ \rightarrow e^+e^+e^-$

Combinatorial Background (Pile up):

- → Two muon decays $2 \times (\mu^+ \rightarrow e^+ \nu \nu)$ and one fake e^- (wrong charge: reconstrution, Bhabha, back-curling $e^+ \rightarrow e^-$)
- → Radiative decay with internal conversion $\mu \rightarrow (e^+) e^+e^- \nu \nu$ and muon decay $\mu^+ \rightarrow e^+\nu \nu$

Combinatorial BG can be largely reduced by imposing

- timing vetos
- kinematic constraints
- vertex requirements

• Radiative decay with internal conversion $\mu^+ \rightarrow e^+e^+e^-\nu\nu$

irreducible background BR($\mu^+ \rightarrow e^+e^+e^-\nu\nu) = 3.4 \cdot 10^{-5}$

Background from $\mu^+ \rightarrow e^+e^+e^-\nu\nu$

Good energy (momentum) resolution $E_{tot} = \Sigma |E_i| \sim \Sigma |p_i|$ essential !!!

Comparison: µ-Decay Experiments

Sindrum 1988:

 $\sigma_p / p (50 \text{ MeV/c}) = 5.1\%$ $\sigma_p / p (20 \text{ MeV/c}) = 3.6\%$

 σ_{θ} (20 MeV/c) = 28 mrad

VTX: $\sigma_d = \sim 1 \text{mm}$

X0(MWPC) = 0.08% - 0.17% per layer

Background from $\mu^+ \rightarrow e^+e^+e^-\nu\nu$

Good energy (momentum) resolution $E_{tot} = \Sigma |E_i| \sim \Sigma |p_i|$ essential !!!

Comparison: µ-Decay Experiments

Sindrum 1988:

 $\sigma_p/p (50 \text{ MeV/c}) = 5.1\%$ $\sigma_p/p (20 \text{ MeV/c}) = 3.6\%$ $\sigma_{\theta} (20 \text{ MeV/c}) = 28 \text{ mrad}$ VTX: $\sigma_d = \sim 1 \text{ mm}$ X0(MWPC) = 0.08% - 0.17% per layer

• MEG 2010 (preliminary): σ₀/p (53 MeV/c) = 0.7 %

 σ_{θ} (53 MeV/c) = 8 mrad

 σ_{a} (53 MeV/c) = 8 mrad

VTX: $\sigma_R = 1.4 \text{ mm}, \sigma_Z = 2.5 \text{ mm}$

Comparison: µ-Decay Experiments

Sindrum 1988:

 $\sigma_p/p (50 \text{ MeV/c}) = 5.1\%$ $\sigma_p/p (20 \text{ MeV/c}) = 3.6\%$ $\sigma_{\theta} (20 \text{ MeV/c}) = 28 \text{ mrad}$ VTX: $\sigma_d = \sim 1 \text{ mm}$ X0(MWPC) = 0.08% - 0.17% per layer

• MEG 2010 (preliminary): σ₀/p (53 MeV/c) = 0.7 %

 σ_{θ} (53 MeV/c) = 8 mrad

 σ_{o} (53 MeV/c) = 8 mrad

VTX: $\sigma_R = 1.4 \text{ mm}, \sigma_Z = 2.5 \text{ mm}$

Aim for similar or better angular and momentum resolutions, high rates and better vertex resolution ~ 150 μm (combinatorial BG)

Detector Concept and Design

Requirements for $\mu^+ \rightarrow e^+e^+e^-$

- Aim for $B(\mu^+ \rightarrow e^+e^+e^-) = 10^{-16}$
 - need 10⁹ stopped muons per second
 - high rate of electrons in detector!

Tracking

- → gas detector disfavored → silicon detector
- fast readout

Momentum resolution

- → high precision detector → pixel sensor
- → low multiple scattering → thin sensors

Silicon Detectors Technologies

Technologies	Thickness	Speed	Readout
ATLAS pixel	260 μm	25 ns	extra RO chip
DEPFET	50 μm	slow (frames)	extra RO chip
MAPS	50 μm	slow (diffusion)	fully integrated
HV-MAPS	>30 µm	O(100ns)	fully integrated

High Voltage Monolithic CMOS Pixel

transistor logic embedded in N-well ("smart diode array")

New Technology!

I.Peric, P. Fischer et al., NIM A 582 (2007) 876 (ZITI Mannheim, Uni Heidelberg)

Sensors tested successfully :

- radiation tolerant
- Iow noise: S/N>40
- tune DAC and zero suppression

Particle Physics Colloquium, April 19th, 2011

HV MAPS Sensor

- Preliminary Sensor Specifications
 - Module Size 1 cm x 6 cm inner and 2 cm x 6 cm outer layer
 - Pixel Size 80 μm x 80 μm
 - → 98k (196k) pixels 128 (256) x 768
 - resolution 1 bit per pixel
 - power 150 mW/cm²
 - zero suppression
 - data output 800 Mbit/s
 - time stamps every 100ns (10 MHz clock → power)

first submission of test structures Feb. 2011 (AMS HV 0.18 micron)

Possible Tracker Layout

30-50 μm Silicon on 25 μm Kapton

Multiple Scattering in Silicon

Momentum range p = 15-53 MeV

multiple scattering!

Example: p = 53 MeV/c

• MEG: $\sigma_{\theta}^{MS} = 8 \text{ mrad}$

- $\mu \rightarrow eee: \sigma_{\theta}^{MS} = 5 mrad$
 - multiple scatt. per layer X/X = 0.044% \rightarrow corresponds to 40 μ m Silicon

Pixel sensors can be thinned down to 30-50 μm (examples CMOS MAPS, DEPFET 50 μm)

"Novel" Experimental Concept

- Strong Magnet (e.g. Cobra from MEG)
- Hollow Double Cone Target (Sindrum)

muons stop on target surface

"Novel" Experimental Concept

- Strong Magnet (e.g. Cobra from MEG)
- Hollow Double Cone Target (Sindrum)

muons stop on target surface

Silicon pixel detector for tracking

- high resolution
- precise hit position 80 μ m x 80 μ m (c.t. multiple scattering σ_{MS} ~ 150 μ m)

"Novel" Experimental Concept

- Strong Magnet (e.g. Cobra from MEG)
- Hollow Double Cone Target (Sindrum)

muons stop on target surface

Silicon pixel detector for tracking

- high resolution
- precise hit position 80 μ m x 80 μ m (c.t. multiple scattering σ_{MS} ~ 150 μ m)

58

Scintillating fiber tracker for timing

- excellent timing $\Delta T = 100 \text{ ps}$
- good spatial resolution
- vector tracking (particle direction)

DC Muon Beams at PSI

- µE1 beamline with rates up to
- πE5 beamline (MEG experiment)
- µE4 beamline
- SINQ target could even provide

- ~ 5 [·] 10⁸ muons/s
- ~ 10 ⁸ muons/s
- ~ 10 ⁹ muons/s
- ~ 10¹⁰ muons/s
- New experiment (final stage) requires muon rates ≥ 1e9/s focussed and collimated on a spot with about d=2 cm diameter

Andre Schöning, PI Heidelberg

59

Target and Vertex Resolution

Sindrum-like Hollow Double Cone Target:

- total length of target: ~ 7 cm
- diameter: 2 cm
- thickness of hollow cone ~60 µm (AI)
- → vertex resolution: ~150 µm

allows to suppress combinatorial BG by factor 5 · 10 -5

Simulation Model

Timing Resolution

$\int dt = 100 \text{ ns}$: 100 decays @ 10⁹ muon stops/s

timing resolution silicon: 100 ns

Andre Schöning, PI Heidelberg

61

Timing Resolution

 $\int dt = 0.1 \text{ ns:} <1 \text{ decay } @ 10^9 \text{ muon stops/s}$

timing resolution silicon: 100 ns timing resolution fiber tracker: ~0.1ns

allows to suppress combinatorial BG by factor 1000

Scintillating Fiber Tracker

Purpose:

- Measure timing of tracks precisely: $\sigma_1 = 50-100 \text{ ps}$
- Allows for unambiguous silicon hit assignment
- x-y plane: Ø = 0.25-1.0 mm fibers

z-position: relative time difference both ends (precision 1-2 cm)

Photodetector: SiPM

time difference between both ends

18 cm

Silicon Photomultipliers

• compact

- fast $\Delta t < 100$ ps, $f_{max} = 1-10$ MHz
- high gain 1e5-1e6
- high efficiency
- radiation hard
- insensitive to magnetic fields

used in various experiments:

- KEK T2K INGRID (photon detection)
- PEPS balloon-borne detector (scintillating fiber tracker)

5 layers of scintillating fibers 250µm diameter

pixel array of avalanche photo diodes

spatial resolution 25 µm

Andre Schöning, PI Heidelberg

Particle Physics Colloquium, April 19th, 2011

Detector Acceptance $\mu^+ \rightarrow e^+e^+e^-$

"Big Barrel" Design

momentum resolution: (half-circle fit) $\begin{array}{rcl} 20 \ \text{MeV/c:} & \sigma_p/\text{p}=2.3\% & \rightarrow & \sigma_p=0.46 \ \text{MeV/c} \\ 35 \ \text{MeV/c:} & \sigma_p/\text{p}=1.3\% & \rightarrow & \sigma_p=0.45 \ \text{MeV/c} \\ 50 \ \text{MeV/c:} & \sigma_p/\text{p}=1.3\% & \rightarrow & \sigma_p=0.65 \ \text{MeV/c} \end{array}$

precise timing information for all tracks by second fiber tracker

Simulation Studies

Tracking Resolutions Studies

 Preliminary results obtained using Geant4 by simulating a small scale detector (radial layers at 2, 3, 4, 5 cm) (R.Narayan)

Possible Improvements

Momentum resolution

- factor ~0.7 fitting second track half
- factor ~0.8 primary vertex fit (3 tracks)
- factor ~0.8 from improved fitting (broken line fit)?
- factor ~0.9 no inner scintillating fiber tracker

+ $\sigma_{_{E}}$ = 0.78-0.91 MeV $\rightarrow \sigma_{_{E}}$ = 0.32-0.36 MeV

Simulated Sensitivity

Rate of $\mu \rightarrow eeevv$ as function of the energy resolution:

• good energy resolution suppresses $\mu \rightarrow eeevv$ BG effectively

• for $\sigma_{\rm F}$ = 0.3-0.6 MeV sensitivity even below 10⁻¹⁶

Further Improvements?

Mu3e Project

Status of Project

interesting new ideas

• no name, looking for collaborators

Interested groups:

- Uni Zürich, ETH Zürich?
- Rome "La Sapienza"
- Paul Scherrer Institute
- Geneva
- Heidelberg/Mannheim

Status of Activites (Heidelberg / Mannheim)

- Tracker: Mechanical Stability / Construction studies
- Cooling studies

MAPS HV CMOS design first funding (50k€) for sensor protoype submission

Broken Line Fits and Fast Online Track Reconstruction
Summary

- Novel detector concept for $\mu \rightarrow eee$ experiment
- Technologies: Silicon Pixel and Scintillating Fibers Trackers
- sensitivity $BR(\mu \rightarrow eee) < 10^{-16}$ seems feasible but more detailed simulations are required
- first pixel tracker prototype for 2012?
- could replace completed MEG experiment (in 2-3 years)
- Iater go to an upgraded high intensity beamline

Conclusion

After more than 20 years time has come to repeat a search for $\mu \rightarrow eee$ and to repeat very a successful experiment (Sindrum)

A good detector is needed to resolve mysteries!

Andre Schöning, PI Heidelberg

Landscape of Mass Scales

Andre Schöning, PI Heidelberg

76

SUSY Higgs mediated LFV

Leptogenesis

Matter-anti matter asymmetry in the universe requires:

- <u>Baryogenesis (Sacharov)</u>
 - → baryon number violation
 - → CP (T) violation
 - → non equilibrium process
- Leptogenesis (alternative)
 - → lepton number violation
 - → CP phase in lepton matrix
 - → non equilibrium process

→ baryogenesis (sphaleron process)

Iepton flavor violation is a consequence of lepton number violation and CP phases

Andre Schöning, PI Heidelberg

(measured but small)

(not observed) (might be measured by v oscillation)

78

Optimum Momentum Resolution

• minimum three layers \rightarrow six coordinates

• momentum resolution multiple scattering dominated:

3 layers equidistant:

4 layers equidistant:

>4 equidistant layers:

 $\frac{\sigma_p}{p} = 2 \frac{b}{BL}$ $\frac{\sigma_p}{p} = \frac{3}{\sqrt{2}} \frac{b}{BL} \approx 2.12 \frac{2b}{BL}$ $\frac{\sigma_p}{p} = \frac{N-3}{\sqrt{N-2}} \frac{b}{BL} \approx \sqrt{N} \frac{b}{BL}$

b ~ 0.001 Tm (for 40µm Silicon)

resolution is given by 1/BL

but minimum momentum given by p_{min} ~ BL

DAQ

- Number of (zero supressed) channels in Silicon ~10-20 million
- Number of channels in Fiber Tracker 5-10k
- What matters is the events rate of ~10⁹
 - data rate ~ 16 Gbyte/s

- triggerless readout (software filter only)

Combinatorial Background

Design Parameters:

- prob (coincidence vertex) = 5 · 10 -5
- prob (coincidence time) = 0.1

BG as function of E tot

fake track and two muon decays

internal conversion and muon decay

combinatorial BG can be ignored already for moderate energy resolution σ_{E} < 3 MeV

Andre Schöning, PI Heidelberg

81

Maximum Muon Beam Intensity?

Combinatorial Background increases!

- The maximum tolerable muon intensity depends mainly on vertex, timing, and tracking resolution (also fake rate).
- assuming that the fake track reconstruction rate is small (0.001) a sensitivity of 10⁻¹⁷ could be achieved with beam intensities of 3 · 10¹⁰ muon stops/s

A new Silicon Detector for MEG?

Expected performance for electron p=53 MeV/c: $\sigma_p = 0.3-0.6$ MeV/c (MEG 0.7 MeV/c) $\sigma_{\theta} \sim 5$ mrad (MEG 8 mrad) $\sigma_{vtx} \sim 0.15$ mm (MEG 1.4-2.5 mm)

momentum resolution could be further improved by increasing the lever arm: e.g. 13 cm \rightarrow 20 - 25cm