A novel experiment searching for the lepton flavour violating decay

$\mu \rightarrow eee$

Niklaus Berger

Physics Institute, University of Heidelberg

NuFACT, August 2011

- Why searching for lepton flavour violation?
- Where

can lepton flavour violation come from?

- Why do it in $\mu \rightarrow eee$?
- How to reach a sensitivity of $BR(\mu \rightarrow eee) < 10^{-16}$?

In the Standard Model, lepton flavour is conserved

- Neutrino oscillations!
- What about charged leptons?
- Charged lepton-flavour violation through neutrino oscillations heavily suppressed (BR < 10⁻⁵⁰)
- Clear sign for new physics

Lepton decays

- $\mu \rightarrow e\gamma$
- $\mu \rightarrow eee$
- $\tau \rightarrow l\gamma$
- $\tau \rightarrow \parallel \parallel$ $\mid = \mu, e$
- $\cdot \ \tau \to lh$

Conversion on Nucleus

• $\mu N \rightarrow eN$

Fixed target experiments (proposed)

- $eN \rightarrow \mu N$
- $eN \rightarrow \tau N$
- $\cdot \ \mu N \to \tau N$

Meson decays

- $\phi, K \rightarrow \parallel'$
- $\cdot \hspace{0.1 cm} J/\psi, \hspace{0.1 cm} D \longrightarrow II'$
- $\cdot \hspace{0.1 cm} Y, \hspace{0.1 cm} B \rightarrow II'$

Collider experiments

- ep $\rightarrow \mu(\tau) X$ (HERA)
- $Z' \rightarrow ||'$ (LHC)
- $\chi^{0,\pm} \rightarrow \parallel' X$ (LHC)

Purely leptonic LFV

- BR($\mu \rightarrow e\gamma$) < 2.4 × 10⁻¹² (MEG) < 10⁻¹³ (MEG, projected)
- BR($\tau \rightarrow e(\mu)\gamma$) <~ 4×10⁻⁸ (B-Factories)
- BR($\mu \rightarrow eee$) < 10⁻¹² (SINDRUM) $< 10^{-16}$ (This talk)
- BR(Z \rightarrow eµ) < 10⁻⁶ (LEP)

Semi-hadronic LFV

- BR(K $\rightarrow \pi e \mu$) <~ 10⁻¹¹
- BR(μ N \rightarrow eN) <~ 10⁻¹² (SINDRUM 2) <~ 10⁻¹⁴ (DeeMe, projected) < down to 10⁻¹⁷ (projected: Mu2e, COMET, Prism)

Models for physics beyond the standard model often naturally induce LFV, either through loops or exchange of heavy intermediates

- Supersymmetric models with GUT with Seesaw
- Models with Leptoquarks
- Models with additional Higgs particles Higgs triplet model
- Models with a Z' or large extra dimensions

 Lepton mixing is large; would naturally expect large slepton mixing

- For these models: BR($\mu \rightarrow eee$) = 0.006 × BR($\mu \rightarrow e\gamma$)
- Points: SUSY LHC parameters

- Constrained Minimal Supersymmetric Model with Seesaw neutrino masses and leptogenesis
- General feature: Strong dependence on $\boldsymbol{\theta}_{_{13}}$

(S. Antusch, E. Arganda, M.J. Herrero, A.M. Teixeira, JHEP 0611 (2006) 090)

- Leptoquarks can lead to $\mu \rightarrow$ eee at one-loop order
- Expect enhancement with regards to $\mu \rightarrow e\gamma$, where a GIM-like suppression is at work
- Complementary to conversion experiments: access to all quark flavours
- Access to Leptoquark masses up to ~ 5 TeV

(K.S. Babu and J. Julio, Nucl.Phys. B841 (2010) 130)

- Dependence on neutrino mass hierarchy and $\boldsymbol{\theta}_{_{13}}$

(M. Kakizaki, Y. Ogura, F. Shima, Phys.Lett. B566 (2003) 210)

Inverted-hierarchical case

Niklaus Berger – NuFact, August 2011 – Slide 12

Model $B(\mu \rightarrow eee)/B(\mu \rightarrow e\gamma)$ $B(\mu \rightarrow eee)$ (predicted) (experimental constraint) < 2.5 × 10⁻¹⁴ ~ 10 -2 mSugra with seesaw < 2.5 × 10⁻¹⁴ SUSY with SO(10) GUT ~ 10⁻² < 2.5 × 10⁻¹⁴ ~ 10 -2 SUSY + Higgs < 10 -12 Z', Kaluza-Klein > 1 Z′ Little Higgs 0.1 - 1 < 10 -12 A CONTRACTOR OF THE OWNER < 10 -12 10 -3 - 10 3 Higgs Triplet

Tensor terms (dipole) e.g. supersymmetry

$$_{\mu \rightarrow eee} = 2 G_{F} (m_{\mu} A_{R} \overline{\mu}_{R} \sigma^{\mu\nu} e_{L} F_{\mu\nu} + m_{\mu} A_{L} \overline{\mu}_{L} \sigma^{\mu\nu} e_{R} F_{\mu\nu}$$

Four-fermion terms e.g. Higgs, Z', doubly charged Higgs.... $+ g_1 (\overline{\mu}_R e_L) (\overline{e}_R e_L)$ $+ g_2 (\overline{\mu}_1 e_R) (\overline{e}_1 e_R)$ scalar $+ g_{3} (\overline{\mu}_{R} \gamma^{\mu} e_{R}) (\overline{e}_{R} \gamma^{\mu} e_{R}) + g_{4} (\overline{\mu}_{L} \gamma^{\mu} e_{L}) (\overline{e}_{L} \gamma^{\mu} e_{L})$ + $g_5 (\overline{\mu}_R \gamma^{\mu} e_R) (\overline{e}_I \gamma^{\mu} e_I)$ + $g_6 (\overline{\mu}_I \gamma^{\mu} e_I) (\overline{e}_R \gamma^{\mu} e_R)$ + H. C.) vector Z (Y. Kuno, Y. Okada, Rev.Mod.Phys. 73 (2001) 151) е

Niklaus Berger – NuFact, August 2011 – Slide 15

κ

- Retain only one loop term and one contact term
- Ratio к between them
- Common mass scale Λ
- Allows for sensitivity comparisons between $\mu \rightarrow eee and \mu \rightarrow e\gamma$
- In case of dominating dipole couplings ($\kappa = 0$):

$$\frac{B(\mu \rightarrow eee)}{B(\mu \rightarrow e\gamma)} = 0.006 \quad (essentially \alpha_{em})$$

- Muons are plentiful and clean
- Complementary to $\mu \rightarrow e\gamma$ and conversion on nuclei
- Advances in detector technology allow for high rate & high precision experiments
- Three body decay offers more constraints and options to study LFV mechanism and CP violation in case of a discovery

 A search for µ → eee with a sensitivity of 10⁻¹⁶ has a large potential to discover LFV or to set very stringent bounds on new physics

An experiment searching for

$\mu \rightarrow eee$

Need a lot of muons

- Use the world's highest intensity DC muon beam at PSI
- Up to 10⁹ muons per second

Need to control backgrounds at the 10⁻¹⁶ level

- Need excellent vertex and timing resolution to get rid of accidentals
- Need excellent momentum resolution to get rid of $\mu \rightarrow$ eeevv decays

Thin pixel silicon tracker and scintillating fibre timing detector

- The Paul Scherrer Institut (PSI) in Villigen, Switzerland has the world's most powerful DC proton beam (2.2 mA at 590 MeV)
- Pions and then muons are produced in rotating carbon targets

DC muon beams at PSI:

- μ E1 beamline: ~ 5 × 10⁸ muons/s
- πE5 beamline: ~ 10⁸ muons/s
 (MEG experiment)
- μ E4 beamline: ~ 10⁹ muons/s
- SINQ (spallation neutron source) target could even provide

~ 5 × 10¹⁰ muons/s

• The $\mu \rightarrow$ eee experiment (final stage) would require 10⁹ muons/s focused and collimated on a ~2 cm spot

- Accidental coincidences of a decay positron with an electron-positron pair from Bhabha scattering or photon conversion
- Can be suppressed by excellent timing and vertex resolution and a large target area
- Use a hollow double cone target à la SINDRUM made of aluminium

^Drevious muon decay experiments

SINDRUM (1988)

• σ_p/p (20 MeV/c) = 3.6%

• σ_{μ} (20 MeV/c) = 28 mrad

• σ_p/p (53 MeV/c) = 0.6 %

• σ_{μ} (53 MeV/c) = 11 mrad

• σ_{ϕ} (53 MeV/c) = 7 mrad

• Vertex: $\sigma_r \approx 1.1 \text{ mm}$, $\sigma_z \approx 2.0 \text{ mm}$

Aim for similar angular and momentum reso-

lution, high rates and better vertex resolution

Niklaus Berger – NuFact, August 2011 – Slide 24

• X₀ (MWPC) =0.08 - 0.17% per layer

• Vertex: $\sigma_d \approx 1 \text{ mm}$

MEG (2010)

• σ_p/p (50 MeV/c) = 5.1%

10° electrons/s disfavour a gas detector

- Use silicon
- Fast readout

Need best possible momentum and vertex resolution

- Get vertex precision by using a pixel sensor
- Momentum resolution dominated by multiple scattering
- Reduce multiple scattering by making sensor thin

Technology	
ATLAS pixel	
DEPFET (Belle II)	
MAPS	
HV-MAPS	

Thickness
260 µm
50 µm
50 µm
> 30 µm

Speed	Readout
25 ns	extra RO chip
slow (frames)	extra RO chip
slow (diffusion)	fully integrated
O(100 ns)	fully integrated

Niklaus Berger – NuFact, August 2011 – Slide 26

High voltage monolithic active pixel sensors

- Implement logic directly in N-well in the pixel - smart diode array
- Use a high voltage commercial process (automotive industry)
- Small active region, fast charge collection
- Can be thinned down to < 50 μm
- Low power consumption

(I.Peric, P. Fischer et al., NIM A 582 (2007) 876 (ZITI Mannheim, Uni Heidelberg))

- Module size 6×1 cm (inner layers) 6×2 cm (outer layers)
- Pixel size $80 \times 80 \ \mu m$
- Goal for thickness: 50 μm
- 1 bit per pixel, zero suppression with tune DAC on chip
- Power: 150 mW/cm²
- Data output 800 Mbit/s
- Time stamps every 100 ns (10 MHz clock for low power consumption, air cooling)

Prototypes successfully tested:

- AMS 350 nm process
- Radiation tolerant
- Low noise: S/N > 40

AMS 180 nm sensors being tested

Niklaus Berger – NuFact, August 2011 – Slide 28

- Support sensors on Kapton[™] prints, with aluminium signal and power lines
- Four layers in two groups in a ~ 1.5 Tesla field
- Total material few % of X_0 , few layers
- Add a scintillating fibre tracker to reduce combinatorics through timing

- The silicon detector is read out with 10 MHz (power consumption)
- Hundred electron tracks in one frame
- Can be resolved by scintillating fibre tracker
- Resolution ~ 100 ps on average one electron

Track electrons from with p = 15 - 53 MeV/c

- Acceptance depends on the model
- Generally better for four-fermion (red) than for photon penguin graphs
- Low minimum momentum required

 $+ m_{\mu} A_{\mu} \overline{\mu} \sigma^{\mu\nu} e_{R} F_{\mu\nu}$ $+ \mathbf{g}_{2} (\overline{\mu}_{1} e_{R}) (\overline{e}_{1} e_{R})$ + $\mathbf{g}_{s} (\overline{\mu}_{p} \gamma^{\mu} e_{p}) (\overline{e}_{p} \gamma^{\mu} e_{p}) + \mathbf{g}_{s} (\overline{\mu}_{p} \gamma^{\mu} e_{p}) (\overline{e}_{p} \gamma^{\mu} e_{p}) + H. C.)$

(All very preliminary)

- Performance depends on background rejection
- Background rejection for $\mu \rightarrow \text{eeevv}$ depends on momentum resolution
- For $\sigma_{E} = 0.3 0.6$ MeV, sensitivity even below 10^{-16} possible
- Simulations indicate that we can reach this with 50 µm sensors

- Interesting idea at an early stage
- Work on sensors and mechanics as well as track reconstruction at Heidelberg University
 - (S. Bachmann, C. Dressler, P. Fischer, M. Kiehn, R. Narayan, I. Peric, S. Rabenecker, A. Schöning, D. Wiedner, B. Windelband, N. Berger)
- Looking for collaborators, several groups interested, maybe you too?
- LOI planned for 2011

- Lepton flavour violation might be just around the corner
- Novel concept for an experiment searching for $\mu \rightarrow eee$
- Technologies: HV monolithic pixel sensor and fibre tracker
- Sensitivity of 10⁻¹⁶ seems feasible
- First pixel tracker prototype in 2012?
- After more than 20 years, time has come to repeat the very successful SINDRUM experiment

Backup Material

• Can derive $\mu \rightarrow$ eee branching ratio from fitting neutrino masses and constraints from $\mu \rightarrow$ e conversion on nuclei

(K.S. Babu and J. Julio, Nucl.Phys. B841 (2010) 130)

• Sensitive to multi-TeV leptoquarks

Little Higgs models allow for $\mu \rightarrow eee$

e

e

Higgs Model FV in Little

- Simplest Little Higgs Model
- Conversion experiments provide strongest constraints
- Access to scales > 50 TeV (curves)

(F. del Aguila, J.I. Illana, M.D. Jenkins, JHEP 1103 (2011) 080)