New Experimental Search for $\mu \rightarrow eee$

Paul Scherrer Institut

Open Users Meeting BV44

January 16, 2013

André Schöning for the Mu3e Collaboration

Experimental Goal

with a sensitivity of: $B(\mu^+ \rightarrow e^+e^+e^-) \le 10^{-16}$ $\tau_{(\mu \rightarrow eee)} \ge 700 \text{ years} \quad (\tau_{\mu} = 2.2 \text{ µs})$

predicted by SM: B($\mu^+ \rightarrow e^+e^+e^-$) << 10⁻⁵⁰

Lepton Flavor Violating Decay: $\mu^+ \rightarrow e^+e^+e^-$

loop diagrams

e Exotic Physics e Ζ' μ e

tree diagram

- Supersymmetry
- Little Higgs Models
- Seesaw Models
- GUT models (Leptoquarks)
- many other models

- Higgs Triplet Model
- New Heavy Vector bosons (Z')
- Extra Dimensions (KK towers)

Motivation $\mu^+ \rightarrow e^+e^+e^-$

Andre Schöning, Mu3e Collaboration

Model Independent Comparison

Effective cLFV Lagrangian:

$$L = \frac{m_{\mu}}{\Lambda^2 (1+\kappa)} H^{dipole} + \frac{\kappa}{\Lambda^2 (1+\kappa)} J_{\nu}^{e\mu} J^{\nu,ee}$$

 κ = parameter

 Λ = common effective mass scale

Andre Schöning, Mu3e Collaboration

PSI, Open Users Meeting, January 15-16, 2013

Model Independent Comparison

The $\mu^+ \rightarrow e^+e^+e^-$ Tree Diagram

Example: Higgs Triplet Models

M.Kakizaki et al., Phys.Lett. **B566** 210, 2003

Motivated by Left-Right Symmetric Models

related to neutrino masses (\rightarrow v mass pattern)

Example: Higgs Triplet Models II

M.Kakizaki et al., Phys.Lett. B566 210, 2003

• Motivated by Left-Right Symmetric Models

The $\mu^+ \rightarrow e^+e^+e^-$ Z-Penguin Diagram

The $\mu^+ \rightarrow e^+e^+e^-$ Z-Penguin Diagram

from dimensional analysis:

$$Br\propto rac{m_{\mu}^{5}}{\Lambda^{4}}$$

$$Br \propto rac{m_{\mu}^{5}}{m_{Z}^{4}} f(\Lambda^{4})$$

dominates if $\Lambda >> m_z$

The $\mu^+ \rightarrow e^+e^+e^-$ Z-Penguin Diagram

from dimensional analysis:

$$Br \propto rac{m_{\mu}^{5}}{\Lambda^{4}}$$

$$Br \propto rac{m_{\mu}^{5}}{m_{Z}^{4}} f(\Lambda^{4})$$

no decoupling in many models!

Many Recent Papers on/with Z-penguin

<u>Hirsch et al.</u>, *Enhancing* $I_i \rightarrow 3I_i$ *with the* Z⁰-*penguin* [arXiv:1202.1825]

X <u>Hirsch et al.</u>, Phenomenology of the **minimal supersymmetric** $U(1)_{B-L} \times U(1)_{R}$ extension of the standard model [arXiv:1206.3516]

<u>del Aguila et al., Lepton flavor violation in the Simplest Little Higgs model</u> [arXiv:1101.2936]

Dreiner at al., New bounds on trilinear *R***-parity** violation from lepton flavor violating observables [arXiv:1204.5925]

X <u>Abada et al.</u>, Enhancing lepton flavour violation in the **supersymmetric inverse seesaw** beyond the dipole contribution [arXiv:1206.6497]

<u>Ilakovac et al.</u>, *Charged Lepton Flavour Violation in Supersymmetric* **Low-Scale Seesaw** *Models* [arXiv:1212.5939]

<u>Aristizabal Sierra et al.</u>, *Minimal lepton flavor violating realizations of minimal seesaw models* [arXiv:1205.5547]

<u>Hirsch et al.</u>, Phenomenology of the minimal supersymmetric $U(1)_{B-L} \times U(1)_{R}$ extension of the standard model [arXiv:1206.3516]

Supersymmetric Seesaw Mechanism

Hisana et al., hep-ph/9510309

$$\begin{split} \Gamma(l_{j}^{-} \rightarrow l_{i}^{-} \ l_{i}^{-} \ l_{i}^{-} \ l_{i}^{-} \ l_{i}^{+}) &= \boxed{\frac{e^{4}}{512\pi^{3}} m_{l_{j}}^{5} \left[|A_{1}^{L}|^{2} + |A_{1}^{R}|^{2} - 2(A_{1}^{L}A_{2}^{R*} + A_{2}^{L}A_{1}^{R*} + h.c.) \right.} \\ &+ (|A_{2}^{L}|^{2} + |A_{2}^{R}|^{2}) \left(\frac{16}{3} \ln \frac{m_{l_{j}}}{2m_{l_{i}}} - \frac{14}{9} \right) \\ &+ \left(|A_{2}^{L}|^{2} + |A_{2}^{R}|^{2} \right) \left(\frac{16}{3} \ln \frac{m_{l_{j}}}{2m_{l_{i}}} - \frac{14}{9} \right) \\ &+ \left(|B_{1}^{L}|^{2} + |B_{1}^{R}|^{2} \right) + \frac{1}{3} (|B_{2}^{L}|^{2} + |B_{2}^{R}|^{2}) + \frac{1}{24} (|B_{3}^{L}|^{2} + |B_{3}^{R}|^{2}) \\ &+ 6(|B_{4}^{L}|^{2} + |B_{4}^{R}|^{2}) - \frac{1}{2} (B_{3}^{L}B_{4}^{L*} + B_{3}^{R}B_{4}^{R*} + h.c.) \\ &+ \frac{1}{3} (A_{1}^{L}B_{1}^{L*} + A_{1}^{R}B_{1}^{R*} + A_{1}^{L}B_{2}^{L*} + A_{1}^{R}B_{2}^{R*} + h.c.) \\ &- \frac{2}{3} (A_{2}^{R}B_{1}^{L*} + A_{2}^{R}B_{1}^{R*} + A_{2}^{L}B_{2}^{R*} + A_{2}^{R}B_{2}^{L*} + h.c.) \\ &- \frac{2}{3} (A_{2}^{R}B_{1}^{L*} + A_{2}^{R}B_{1}^{R*} + B_{2}^{L}F_{2}^{R*} + A_{2}^{R}B_{2}^{L*} + h.c.) \\ &+ \frac{1}{3} \left\{ 2(|F_{LL}|^{2} + |F_{RR}|^{2}) + |F_{LR}|^{2} + |F_{RL}|^{2} \right. \\ &+ (B_{1}^{L}F_{LL}^{*} + B_{1}^{R}F_{RR}^{*} + B_{2}^{L}F_{LR}^{*} + B_{2}^{R}F_{RL}^{*} + h.c.) \\ &+ 2(A_{1}^{L}F_{LL}^{*} + A_{1}^{R}F_{RR}^{*} + h.c.) + (A_{1}^{L}F_{LR}^{*} + A_{1}^{R}F_{RL}^{*} + h.c.) \\ &- 4(A_{2}^{R}F_{LL}^{*} + A_{2}^{L}F_{RR}^{*} + h.c.) - 2(A_{2}^{L}F_{RL}^{*} + A_{2}^{R}F_{LR}^{*} + h.c.) \right\} \right], \end{split}$$

Motivation $\mu^+ \rightarrow e^+e^+e^-$

<u>Abada et al., Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution [arXiv:1206.6497]</u>

Non decoupling behaviour of Z-penguin contribution Note $\mu^+ \rightarrow e^+e^+e^-$ dominates over $\mu^+ \rightarrow e^+ \gamma$ for m₀ > 1 TeV

Andre Schöning, Mu3e Collaboration

PSI, Open Users Meeting, January 15-16, 2013

Model Independent Comparison

Z-penguin enhanced by factor 10

Improvement of existing SINDRUM limit by 2 orders of magnitude is relevant!

Experimental Situation

Backgrounds

Irreducible BG: radiative decay with internal conversion

$$\mathsf{B}(\mu^+ \rightarrow e^+ e^+ e^- vv) = 3.4 \cdot 10^{-5}$$

$$\sum_{i} E_{i} = m_{\mu}$$
$$\sum_{i} \vec{p}_{i} = 0$$

Backgrounds

Irreducible BG: radiative decay with internal conversion

Backgrounds

Irreducible BG: radiative decay with internal conversion

Accidental Backgrounds

Overlays of two normal muon decays with a (fake) electron

Electrons from: Bhabha scattering, photon conversion, mis-reconstruction

The Target

Spread muon decays

in space and time

- DC Muon beam (PSI)
- about 4000 muons resting on target at same time
- Iarge stopping target
- good vertexing and timing resolution required

e.g. Sindrum-like extended target

hollow double cone (e.g. 30-80 µm Al)

Kinematic Resolution + Multiple Scattering

• Muon decay:

→ electrons in low momentum range p < 53 MeV/c</p>

• Multiple scattering is dominant!

 Need thin, fast and high resolution detectors (tracking + time of flight)

$$\Theta_{MS} \sim \frac{1}{P} \sqrt{X/X_0}$$

Experimental Proposal

Geometrical acceptance ~70 % for $\mu^+ \rightarrow e^+e^+e^-$ decay

Mechanical Prototypes

Silicon Pixel Detector

Andre Schöning, Mu3e Collaboration

Silicon Pixel Detector

I.Peric, P. Fischer et al., NIM A 582 (2007) 876 (ZITI Mannheim, Uni Heidelberg)

Technology Choice

High Voltage Monolithic Active Pixel Sensors (HV-MAPS)

- high precision \rightarrow pixels 80 x 80 μ m²
- can be "thinned" down to $\sim 30 \ \mu m$ ($\sim 0.0004 \ X_0$)
- Iow production costs (standard HV-CMOS process, 60-80 V)
- active sensors \rightarrow small RO bandwidth, no bump bonding required
- triggerless and fast readout (LVDS link integrated)
- Iow power

Pixel Detector Tests

Andre Schöning, Mu3e Collaboration

Pixel Detector: Readout Frames @ 20 MHz

100 muon decays @ rate 2 · 10⁹ muon stops/s

50 ns snapshot

Pixel: Readout Frames 50 ns

100 muon decays @ rate 2 · 10⁹ muon stops/s

Additional Time of Flight (ToF) detectors required < 1ns

Mu3e Baseline Design

not to scale

Scintillating Fiber Tracker

- high spatial resolution (matching with silicon hits)
- scintillating fibers \emptyset = 250 µm fibers (3 layers)
- photosensor
 - Hamamatsu MPPC arrrays (SiPM)
 - high gain >10⁵, high frequency > 1MHz
 - alternative SiPM?
- time resolution <1 ns</p>

Andre Schöning, Mu3e Collaboration

- optical cross talk?
- prototypes in preparation

in collaboration with EPFL (Nakada et al.)

University Geneva

Mu3e Baseline Design

not to scale

Scintillating Tile Detector

Timing information helps to reduce accidental backgrounds

Data Acquisition

Central pixel detectors (Phase I) + frontend data rate of 90 Gbit/s

Full pixel detector (Phase II) + frontend data rate of 1500 Gbit/s

Online event reconstruction usingGraphics Processing Units (GPUs)

Logging rate ~50-100 MB/s

Simulation

Reconstruction

3D Track Reconstruction

Invariant Mass Resolution of Signal

Sensitivity Study

Andre Schöning, Mu3e Collaboration

Sensitivity Projection

Andre Schöning, Mu3e Collaboration

PSI Facility for Mu3e

Phase I (2015+): ~10⁸ muons/s

Andre Schöning, Mu3e Collaboration

πe5 Beamline (Phase I)

MEG and Mu3e could co-exist if MEG is to be upgraded

• muon rates of 1.4 · 10⁸/s achieved in past

• rate of 10⁸/s needed to reach B($\mu^+ \rightarrow e^+e^+e^-$) ~ 2 ·10 ⁻¹⁵ (90%CL) in 3 years

High Intensitiy Muon Beamline (Phase II)

HiMB = High Intensity Muon Beamline

- Muon rates in excess of 10¹⁰ per second in beam phase acceptance possible
- 2 · 10⁹ muons/s needed to reach ultimate goal of B(μ⁺ →e⁺e⁺e⁻) < 10⁻¹⁶
- Not before 2017

Mu3e Proto-Collaboration

Physics Institute, University Zurich
 Zürich

Institute for Particle Physics, ETH Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Backup

Efficiencies and Backgrounds

	Phase IA	Phase IB	Phase II
Backgrounds:			
Michel	0	$< 2.5 \cdot 10^{-18}$	$5 \cdot 10^{-18}$
$\mu ightarrow eee u u$	$1 \cdot 10^{-16}$	$1 \cdot 10^{-17}$	$1 \cdot 10^{-17}$
$\mu \rightarrow eee\nu\nu$ and accidental Michel	0	$< 2.5 \cdot 10^{-21}$	$7.5\cdot10^{-18}$
Total Background	$1 \cdot 10^{-16}$	$1 \cdot 10^{-17}$	$2.3\cdot 10^{-17}$
Signal:			
Track reconstruction and selection efficiency	26%	39%	38%
Kinematic cut (2σ)	95%	95~%	95%
Vertex efficiency $(2.5\sigma)^2$	98%	98%	98~%
Timing efficiency $(2\sigma)^2$	-	90%	90~%
Total efficiency	24%	33%	32%
Sensitivity:			
Single event sensitivity	$4 \cdot 10^{-16}$	$3 \cdot 10^{-17}$	$7 \cdot 10^{-17}$
muons on target rate (Hz)	$2\cdot 10^7$	$1\cdot 10^8$	$2\cdot 10^9$
running days to reach $1 \cdot 10^{-15}$	2600	350	18
running days to reach $1 \cdot 10^{-16}$	-	3500	180
running days to reach single event sensitivity	6500	11700	260

Momentum Resolution I

Momentum resolution given by (linearised):

Momentum Resolution II

Momentum resolution for half turns given by:

Multiple Scattering in Silicon

Momentum range p = 15-53 MeV

multiple scattering!

- Example: p = 53 MeV/c
- MEG: $\sigma_{\Theta}^{MS} = 8 \text{ mrad}$

- multiple scatt. per layer $X/X_0=0.1\% \rightarrow$ corresponds to 90 µm Silicon

- $\mu \rightarrow eee: \sigma_{\Theta}^{MS} = 5 mrad$
 - multiple scatt. per layer $X/X_0=0.044\% \rightarrow corresponds$ to 40 µm Silicon

Pixel sensors can be thinned down to 30-50 μm (examples CMOS MAPS, DEPFET 50 μm)

MuPix2 Tests: Double Pulse Resolution

will improve with MuPix3 chip

ToF Readout + New DRS5 Chip

DRS4 chip (PSI)

- switched capacitor chip
- 8+1 Channels
- 700 MS/s- 5 GS/s

New DRS5 chip (PSI)

- design planned for 2013
- \geq 2 MHz continuous hit rate
- option for Mu3e ToF readout

ToF Readout + STIC Chip

Figure 13.9: Dual threshold discrimination for energy and timing information.

STIC timing chip (KIP Heidelberg)

- 16 channel ASIC
- UMC 180 nm CMOS technology
- for SiPM readout
- tested with MPPC S10362-33-50 SiPM
- time resolution 20ps
- faster version (STIC II) planned

DAQ and Online Filter Farm

Data Acquisition:

• pixel detector:

- number of (zero suppressed) channels ~275 million
- per 50 ns readout frame ~2000 hits

• fiber tracker:

number of (zero suppressed) channels about 10k

• for muon stop rate of ~2·10⁹ (2·10⁸) muons per second

raw data rate max ~ 250 (25) Gbyte/s (large but smaller than at LHC)

DAQ and Online Filter Farm

Online software filter farm

- continuous front-end readout (no trigger)
- FPGAs and Graphical Processor Units (GPUs)
- online track (event) reconstruction
- data reduction by factor ~1000
- on tape ~ 100 Mbyte/s

Readout Frames

- The pixel detector readout is clocked at 20 MHz (50 ns)
- Intrinsic time resolution in silicon 10-20 ns (to be experimentally verified)
- Precise timing provided by ToF is 0.2-1ns
- Decay positrons spread over up to 3 ns (recurler)

Magnet

Magnet Design Parameter

B_{nom} = 1 Tesla B_{max} = 2 Tesla Length (inner bore) = 2.5m Diameter (inner bore = 1.0 m

variation of magnetic field

Magnet: gradient or no gradient?

Simulation Results for Baseline Design:
11 hits per electron gradient field
17 hits per electron homogeneous field

Speed of Track Reconstruction:

- homogeneous field allows for fast non-iterative analytical calculation
- reconstruction speed important for online filtering!

Homogeneous magnetic field of about 1-1.2 Tesla preferred
Geometrical Acceptance

Detector Acceptance $\mu^+ \rightarrow e^+e^+e^-$

$\begin{array}{cccc} c_1 &=& \frac{g_1^2 + g_2^2}{16} + g_{34}^2 \\ c_2 &=& g_{56}^2 \\ c_3 &=& e \ A^2 \\ c_4 &=& e \ Ag_{34} \ \eta \\ c_5 &=& e \ Ag_{56} \ \eta' \end{array} \right) \text{ acc } \sim 80\% \\ \begin{array}{cccc} a &=& c \ Ag_{34} \ \eta \\ c_5 &=& e \ Ag_{56} \ \eta' \end{array} \right)$ **Model Dependence:** four fermion $\frac{dB(\mu \to eee)}{dx_1 \ dx_2 \ d\cos\theta \ d\phi} = \sum_{k=1}^{3} c_k \ \alpha_k(x_1, x_2)$ photon penguin Minimum electron energy: T-odd 10 50 20 30 40 acceptance 4-fermion 0.8 0.8 0.6 0.6 measure momenta in range: p=15-53 MeV/c 0,4 0.4 0.2 0.2 0 Ω 10 20 30 40 50 E^{e}_{min} (MeV) determines acceptance!

Andre Schöning, Mu3e Collaboration

PSI, Open Users Meeting, January 15-16, 2013

2D versus 3D tracking

PSI, Open Users Meeting, January 15-16, 2013

2

1,75

1.5

1.25

0.75

0.5

0.25

0

Andre Schöning, Mu3e Collaboration

Comparison: µ-Decay Experiments

• Sindrum 1988:

 $\sigma_p/p (50 \text{ MeV/c}) = 5.1\%$ $\sigma_p/p (20 \text{ MeV/c}) = 3.6\%$ $\sigma_{\theta} (20 \text{ MeV/c}) = 28 \text{ mrad}$ VTX: $\sigma_d = \sim 1 \text{ mm}$ X0(MWPC) = 0.08% - 0.17% per layer

• MEG 2010 (preliminary):

 $\sigma_{p}/p (53 \text{ MeV/c}) = 0.7 \%$

 σ_{Φ} (53 MeV/c) = 8 mrad

 σ_{θ} (53 MeV/c) = 8 mrad

VTX: $\sigma_R = 1.4 \text{ mm}, \sigma_Z = 2.5 \text{ mm}$

Aim for similar or better angular and momentum resolutions, high rates and better vertex resolution ~ 150 μm (combinatorial BG)

Comparison of LFV Experiments

LFV process	Experiment	Future limits	Year (expected)
$BR(\mu \to e\gamma)$	MEG [8]	$O(10^{-13})$	~ 2013
	Project X [55]	$O(10^{-15})$	> 2021
$BR(\mu \rightarrow eee)$	Mu3e [56]	$\mathcal{O}(10^{-15})$	~ 2017
	"	$O(10^{-16})$	> 2017
	MUSIC [57]	$O(10^{-16})$	~ 2017
	Project X [55]	$O(10^{-17})$	> 2021
$CR(\mu \to e)$	COMET $[57]$	$O(10^{-17})$	~ 2017
	Mu2e [58]	$O(10^{-17})$	~ 2020
	PRISM/PRIME [57, 59]	$O(10^{-18})$	~ 2020
	Project X [55]	$O(10^{-19})$	> 2021
$BR(\tau \to \mu \gamma)$	Belle II [60]	$\mathcal{O}(10^{-8})$	> 2020
$BR(\tau \to \mu \mu \mu)$	Belle II [60]	$\mathcal{O}(10^{-10})$	> 2020
$BR(\tau \to e\gamma)$	Super B $[45]$	$\mathcal{O}(10^{-9})$	> 2020
$BR(\tau \to \mu \gamma)$	Super B $[45]$	$\mathcal{O}(10^{-9})$	> 2020
${\rm BR}(\tau \to \mu \mu \mu)$	Super B $[45]$	$\mathcal{O}(10^{-10})$	> 2020

from Calibbi et al. 2012

Higgs-mediated LFV Yukawa Couplings

Andre Schöning, Mu3e Collaboration

PSI, Open Users Meeting, January 15-16, 2013