Testbeam Measurements with MuPix Sensors

Moritz Kiehn for the Mu3e Collaboration

Physikalisches Institut, Universität Heidelberg

PI Palaver, Heidelberg, 30. April 2014

International Max planes Research School

The Mu3e Experiment

- Precision experiment
- Search for $\mu^+ \to {\rm e^+e^-e^+}$
- Sensitivity <1 in 10^{16} decays
- Standard Model $\ll\!\!1$ in 10^{50}

Importance ?

- Indirect new physics search
- High sensitivity

Signals and Backgrounds

3/21

Signal

- Common vertex
- $\sum \vec{p_i} = 0$
- *p* < 53 MeV

Backgrounds

Internal Conversion

- Common vertex
- $\sum \vec{p_i} \neq 0$
- In-time

Combinatorial

- No common vertex
- Out-of-time

 $\begin{array}{l} \mbox{Requires } \sigma_p < 0.5\,\mbox{MeV} \\ \sigma_t < 20\,\mbox{ns} \end{array}$

Multiple Scattering

$$heta_{MS} = rac{13.6\,\mathrm{MeV}}{p} \sqrt{x/X_0}$$

Example

- *p* = 35 MeV
- 200 µm Si
- $\Omega R = 5 \,\mathrm{cm}$
- $\Delta y \approx 1 \,\mathrm{mm}$

The Mu3e Experiment

- ${>}10^9~\mu^+$ Decays/s
- Electrons p < 53 MeV
- Multiple scattering dominates

- Fast $<20 \, \text{ns}$
- Thin $< 1 \% X_0$
- Pixel $80 \times 80 \,\mu\text{m}^2$

Ultra-Lightweight Mechanics

- 50 µm Silicon sensor
- 25 µm Kapton flexprint
- 50 μm Kapton support frame
- ightarrow <1 ‰ Radiation length

Silicon Pixel Sensors

Hybrid

Monolithic Active Pixel Sensor

- HV \sim 700 V
- Sensor thickness ${\sim}250\,\mu\text{m}$
- Extra material
- Complex and expensive

HV ⊲70 V (HV-MAPS)
Thin active zone <20 µm
Cheap, commercial process

Silicon Pixel Sensors

7/21

Hybrid

Monolithic Active Pixel Sensor

- HV \sim 700 V
- Sensor thickness ${\sim}250\,\mu\text{m}$
- Extra material
- · Complex and expensive

- HV \sim 70 V (HV-MAPS)
- Thin active zone ${<}20\,\mu\text{m}$
- Cheap, commercial process

MuPix4 HV-MAPS Prototype

I. Peric, P. Fischer et al. NIMA 582(2007)876

- $92 \times 80 \, \mu m^2$ pixel size
- Global threshold
- Zero-suppressed digital readout
- Timestamps
- Incorrect address every 2nd double row

DESY Testbeam

Provided by DESY

- Beamline T22
- 1 GeV to 6 GeV electrons
- Aconite beam telescope

Alignment

With Misalignment

Track Residuals After Alignment

Single Hit Resolution

Global Efficiency / High Voltage

 $14/_{21}$

Global Efficiency / Incidence Angle

15/21

Pixel Efficiency

16/21

Subpixel Efficiency / 4x4 Submatrix

17/21

Timing

Difference Timestamp Hit - Trigger

- External timestamp 100 MHz
- Time resolution 17 ns (Sensor + DAQ)

Summary & Outlook

19/21

Mu3e

- Search for $\mu^+ \to {\rm e^+e^-e^+}$
- Fast and precise electron tracker
- Sensitivity 1 in 10¹⁶ decays

MuPix4 Testbeam

- Efficiency >99%
- Position resolution \sim pixel size
- Time resolution ${<}17\,\text{ns}$
- HV-MAPS for Mu3e works

Outlook

- MuPix6 prototype
- Scale size
- Full Integration

Summary & Outlook

19/21

Mu3e

- Search for $\mu^+ \to {\rm e^+e^-e^+}$
- Fast and precise electron tracker
- Sensitivity 1 in 10^{16} decays

MuPix4 Testbeam

- Efficiency >99%
- Position resolution \sim pixel size
- Time resolution $<\!\!17\,\mathrm{ns}$
- HV-MAPS for Mu3e works

Outlook

- MuPix6 prototype
- Scale size
- Full Integration

Thank You

Backup

Mu3e Collaboration

- Paul-Scherrer Institute, Switzerland
- ETH Zürich
- University Zürich
- University Geneva
- Heidelberg University
- ZITI Mannheim

HV-MAPS

- P-N junction between N-well and substrate
- Reverse bias voltage
- Thin depletion zone beneath N-well

Hitmap a.k.a Hybrid Strixel Sensor

0° incidence angle 70 V high voltage 838 mV threshold 5 GeV beam energy

A3

Pixel Tuning

Before Tuning Efficiency 86.0 Efficiency Efficiency 0.99 0.98 1.0 1.0 0.9 0.9 35 35 0.8 0.8 30 30 0.7 0.7 Row Number 0.6 A.0.0 0.5 0.0 0.4 D.0 25 0.6 A 0.5 0.0 Efficienc 20 15 0.3 0.3 10 10 0.2 0.2 5 0.1 0.1 0 0.0 0 0.0 25 30 0.98 1.00 25 30 0.98 1.00 0 0 10 20 Column Number Column Number Efficiency Efficiency 45° incidence angle

After Tuning

Clustering / Charge Sharing

0° incidence angle 70 V high voltage 823 mV threshold 5 GeV beam energy

1-pixel cluster dominate

2-Pixel Cluster

Mu3e Expected Sensitivity over Time

Α6