Novel thin High Voltage Monolithic **Active Pixel Sensors** for the Mu3e experiment

> Dirk Wiedner, Heidelberg On Behalf of the Mu3e Collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

The Mu3e Signal

- $\mu^+ \rightarrow e^+ e^- e^+$ rare in νSM
 - o Branching ratio <10⁻⁵⁴
 →unobservable
- Enhanced in BSM theories

Q+

 \mathcal{W}^{+}

VN

Ve

The Mu3e Signal

- $\mu^+ \rightarrow e^+ e^- e^+$ rare in SM
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions

Loop level: SUSY

 Dirk Wiedner, on behalf of the Mu3e collaboration

The Mu3e Signal

- Rare decay (BR<10⁻¹², SINDRUM '88) For BR O(10⁻¹⁵)
- >10¹⁵ muon decays
- High decay rates O(10⁸ µ/s)
 Signal properties:
- $\sum E_e = m_\mu c^2$
- $\sum \overrightarrow{p_e} = 0$
- Common vertex
- Coincident in time
- Maximum electron momentum 53 MeV/c

The Mu3e Background

- Accidental combinations

 µ⁺→e⁺vv & µ⁺→e⁺vv & e⁺e⁻
 many possible combinations
- $\sum E_e \neq m_\mu c^2$
- $\sum \overrightarrow{p_e} \neq 0$

- Good time and
- Good vertex resolution required

The Mu3e Background

- Internal conversion background:

 µ⁺→e⁺e⁻e⁺νν
- $\sum E_e < m_\mu c^2$
- $\sum \overrightarrow{p_e} \neq 0$
- Good momentum resolution

Phased experiment

- Phase I uses the existing PiE5 beam line at PSI, shared with MEG II, 10⁸ muons/s
- Phase II requires a High Intensity Muon Beamline: HiMB, > 2.10⁹ muons/s
- > In the following **phase I** will be discussed

Challenges

- High rates:
- Good time resolution:
- Good vertex resolution:
- Excellent momentum resolution:
- Extremely low material budget:

$$\sigma_p \sim \frac{1}{p} \sqrt{\frac{x}{X_0}}$$

up to 10⁸ μ/s 100 ps ~200 μm ~ 0.5 MeV/c **1‰ X**₀ per Si-Tracker Layer

- Muon beam
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

- Muon beam
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

- Muon beam O(10⁸/s)
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber detector
- Tile detector

• Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 12

Mu3e Magnet

- 1T solenoid
- 3m long
- 1m bore diameter
- Superconducting coil
- Dry cryo system
- Magnet TDR ready
- Delivery early 2019

Timing Detectors

Simulated tracks for Phase II

0.1 ns

• Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 15

Timing Detectors

Fiber detector

- Inner detector
- 250 µm scintillating fibers
- \circ ≈ 0.3% X/X₀
- $\circ \leq 0.5$ ns resolution

• Tile detector

- o Recurl stations
- \circ 6.5 x 6.5 x 5.0 mm³ tiles
- $\circ \leq 100 \text{ ps resolution}$

Common readout ASIC - MuTrig

Dirk Wiedner, on behalf of the Mu3e collaboration

Fiber Detector

Fiber ribbon modules

- 32 mm wide
- ~290 mm long
- 4 layers fibers of Ø 250 µm
- SiPM arrays (LHCb type)
- 4 MuTrig readout chips

Scintillating fiber ribbons

Silicon photo multiplier (SiPM) array

Fiber Detector

Fiber ribbon modules

- 32 mm wide
- ~290 mm long
- 4 layers fibers of Ø 250 µm
- SiPM arrays (LHCb type)
- 4 MuTRiG readout chips
- A demonstrator will be build by the end of the year

Fiber tracker mechanical design study

Fiber Time Resolution

- Fiber detector prototypes tested
- Good time resolution:
- <400ps including ASIC

Tile Detector

Recurl station:

- 7 x 14 sub modules mounted on end rings and cooling structure
- Total length 368 mm
- 3136 channels

Full detector phase I

- 2 recurl stations –
- total of 6272 channels

Rendering of Tile Detector station

Tile Prototype

- Technical prototype build this year
- Develop assembly tools for mass production
- Tested with electron beam @ DESY (2-7 GeV)
- Excellent light yield
- Low crosstalk

Tile sub-module prototype

Tile Prototype

- Tested with electron beam @ DESY (2-7 GeV)
- Excellent light yield
- Low crosstalk
- Excellent time resolution of 35 ps achieved
 - without time walk correction

Recarl pixel layers		\frown
Scintillator tiles	It ner pout layers	
μ Boars	Target	
	Scinellating fibres	
	Outer pixel layers	

Silicon pixel tracker:

- 2 vertex layers
- 2 outer layers

 Central station
 2 recurl stations

- Total No of channels:
- Phase I 178 M

Mu3e detector scheme

Recurl pixel layers	
Scintillator tiles	Iron piul layes
p Dears	Target
	Scinelisting fibres
	Outer pixel layers

Single layer structure:

- 50 µm silicon
- 25 µm Kapton flex print with aluminum traces
- 25 µm Kapton frame as support
- Less than 1‰ of radiation length per layer
- Helium cooling
- Total No of channels:
- Phase I 178 M

Pixel Tracker Rendering of CAD study

Recarl pixel layers		_
Scintillator tiles	Inner pixel layers	
	µ Deam Target	
	Local balance from	
	screttorg tors	
	Outer pixel layers	

Successful feasibility studies for:

- ✓ Module mechanics
- ✓ He-cooling with low vibration
- Ultra-thin flexible circuit boards
- HV-CMOS small prototypes
- Readout board prototype

Pixel Tracker Rendering of CAD study

Recarl pixel layers		_
Scintillator tiles	Inner poul layers	
	Beam Tanget	
	Scirolluting fibres	
	Outre sized laware	

✓ Detailed design for:

Module mechanics

- ✓ He-cooling distribution
- ✓ HV-CMOS large prototype
- Readout board pre production prototype

Picarjun ayın		-
Scintillator tiles	Inner poul layers	
	p Beam Target	
	Scinalizing fibres	
	Outry shall have	

✓ Detailed design for:

Module mechanics

- ✓ He-cooling distribution
- ✓ HV-CMOS large prototype
- Readout board pre production prototype

meany cartayers		
Scintillator tiles	Itrar pixel layers	
p Dear	a Target	
	Scinsliking fibres	
	Outer pixel layers	

✓ Detailed design for:

Module mechanics

- \checkmark He-cooling distribution
- ✓ HV-CMOS large prototype
- Readout board pre production prototype

Recarl pixel layers		_
Scintillator tiles	Inner poul layers	
	Beam Tanget	
	Scirolluting fibres	
	Outre sized laware	

✓ Detailed design for:

✓ Module mechanics

\checkmark He-cooling distribution

- ✓ HV-CMOS large prototype
- Readout board pre production prototype

Ultra-thin HDI

- Two layer HDI test design (top)
- Prototype from LTU .
- Single point tape automated bonding

Recurl pixel layers	
Scintillator tiles	Inner pixel layers
p Deam	Target
	Scirelluting fibres
	Outer pixel layers

Ultra-thin HDI

 Two layer HDI test design (top)

Al 14 µm	Material	Thickness [µm]	X/X0
PI 10 μm	upper Al layer	14	$1.57 \cdot 10^{-4}$
Glue 5 µm	isolator (PI)	35	$1.22 \cdot 10^{-4}$
PI 25 μm	glue	10	$0.25 \cdot 10^{-4}$
Glue 5 um	lower Al layer	14	$1.57 \cdot 10^{-4}$
Al 14 µm	lower PI shield	10	$0.35 \cdot 10^{-4}$
PI 10 μm	total	83	$4.96 \cdot 10^{-4}$

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- N-well in p-substrate
- Reversely biased

by Ivan Perić

I. Perić, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

HV-MAPS

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- N-well in p-substrate
- Reversely biased ~85V
 - Depletion layer
 - Charge collection via drift
 - ➤ Fast <1 ns charge collection</p>
 - \circ Thinning to 50 μ m possible
- Integrated readout electronics

by Ivan Perić

I. Perić, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

Full System on Chip

- 180 nm HV-CMOS
- Pixel matrix:
 0 128 x 200 pixels
 - \circ 81 x 80 μ m² each
- Analog part
 - Pixel sensor
 - Pre-amplifier
 - **Digital** part
 - Comparator
 - Read out state machine
 - 1.25 Gbit/s serial data outputs
 - Low power:
 - ~210mW/ cm²

Dirk Wiedner, on behalf of the Mu3e collaboration

Full System on Chip

- 180 nm HV-CMOS
- Pixel matrix:
 - 128 x 200 pixels
 - \circ 81 x 80 μ m² each
- Analog part
 - Pixel sensor
 - Pre-amplifier
- Digital part
 - Comparator
 - Read out state machine
 - 1.25 Gbit/s serial data outputs
- Low power:
 - o ~210mW/ cm²

Dirk Wiedner, on behalf of the Mu3e collaboration

Sensor + Analog + Digital

MuPix8 block diagram

• Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 36

• Dirk Wiedner, on behalf of the Mu3e collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

• Dirk Wiedner, on behalf of the Mu3e collaboration

On Chip:

- Zero suppression
- Read-out state machine
- Voltage controlled
 oscillator +
- Phase locked loop
- Fast serializer
- 1.25 Gbit/s LVDS outputs

30mV/div eye height eye width jitter 200ps/div

> Eye diagram MuPix8; eye height 199mV, eye width > 0.65 UI

Test beam measurements

- DESY test beam
 4 GeV electrons
- MuPix8 telescope
 - Beam telescope
 - 4 layers of MuPix8 pixel sensors
 - Includes DUT
 - Plastic scintillators as time reference

MuPix8 beam telescope

Spatial Resolution

MuPix8 spatial resolution

Efficiencies

>99.5% efficiency

o 4 GeV electrons @ DESYo 90° impact angle

Low pixel noise

 Rate per pixel ~0.2Hz

MuPix8 Efficiency

and Noise

- >99.5% efficiency

 4 GeV electrons @ DESY
 90° impact angle
- Low pixel noise
 - Rate per pixel ~0.2Hz
 Hot pixels masked
 - Hot pixels masked

• Dirk Wiedner, on behalf of the Mu3e collaboration

X-talk

- MuPix8
- DESY November 2017

 4 GeV electrons@DESY
- X-talk between
 - o **Rows**
 - ≤ 10% around working point

Time Resolution

- Time difference of hits registered in MuPix8 and solution
 Scintillator
 - 4 GeV electrons
 - Sampling rate is 125 MHz
 - $\sigma = 21.67 \pm 0.01$ ns

MuPix8 time resolution

Time Resolution

- Time difference of hits registered in MuPix8 and scintillator
- 4 GeV electrons
- Sampling rate is 125 MHz
- $\sigma = 14.48 \pm 0.01$ ns
 - After correcting for pixel to pixel delay differences

MuPix8 time resolution pixel delay corrected

Irradiation Studies

- Irradiation with neutrons and protons
- MuPix7 irradiated with:
 neutrons up to
 - 5.0 x 10¹⁵ n_{eq}/cm²
 - o 24 GeV protons up to
 - 7.8 10¹⁵ protons/cm²
- Efficiencies of >90%
- Time resolution < 22ns
- Data transmission at 1.25Gbit/s

Efficiencies lower neutron irradiation

Irradiation Studies

- Irradiation with neutrons and protons
- MuPix7 irradiated with:
 neutrons up to
 - 5.0 x 10¹⁵ n_{eq}/cm²
 - o 24 GeV protons up to
 - 7.8 10¹⁵ protons/cm²
- Efficiencies of >90%
- Time resolution < 22ns
- Data transmission at 1.25Gbit/s

Noise increase with irradiation

Irradiation Tests

- Irradiation with neutrons and protons
- MuPix7 irradiated
- Efficiencies of >90%
- Time resolution < 22ns
- Data transmission at 1.25Gbit/s

Summarized in: H. Augustin et al. *Irradiation study of a fully monolithic HV-CMOS pixel sensor design in AMS 180 nm* https://arxiv.org/abs/1712.03921v2

Thinning

5

"Ovati

50 µm Si-wafers

- Commercially available
- HV-CMOS 50 µm (AMS)
- 50 µm for MuPix4 and MuPix7
 50 µm MuPix8 not tested

Thinned Sensors

- Prototypes thinned:
 - $_{\odot}$ MuPix8 thinned to 70 μm , 100 μm
- Good performance of thin chips
 In lab
 - In particle beam
- MuPix8 50 µm just back
- MuPIx4 and MuPix7 thinned to 50 µm showed good performance

MuPix4 thinned to 50µm

Summary

- Mu3e searches for lepton flavor violation
- Ultra thin tracker with ~182M pixel
- High Voltage Monolithic Active Pixel Sensors
- Prototypes exceed requirements

collaboration

Schedule

- 2018 Design of full size HV-MAPS chip
- 2019 Magnet delivery and detector construction
- 2020 Installation and commissioning at PSI
- 2021 Data taking at up to a few $10^8 \mu/s$

Outlook: MuPixX

- 2x2 cm² pixel matrix
- Reduced number of I/O pads
- I²C inspired slow control
- Comparator in pixel cell?
 No analog x-talk on transmission line
- Better power distribution
 Better timing?
- On chip ADC

Temperature measurement

Outlook: Projected Sensitivity

Single event sensitivity (SES) and the corresponding 90% and 95% C.L. upper limits versus data taking days for the Mu3e detector

Institutes

Mu3e-collaboration:

- ETH Zürich, Switzerland ETH zürich
- PSI, Switzerland
- University of Geneva, Switzerland
- Physics Institute, University of Heidelberg, Germany
- Kirchhoff Institute, University of Heidelberg, Germany
- Institute for Process Data Processing and Electronics, Karlsruhe
 Institute of Technology, Germany
- Institute of Nuclear Physics, University of Mainz, Germany
- University of Zürich, Switzerland
- The University of Liverpool, United Kingdom
- University of Oxford, United Kingdom
- University of Bristol, United Kingdom
- University College London, United Kingdom <u>£</u>

Acknowledgements

- The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)
- We would like to thank PSI for valuable test beams!
- We thank the Institut f
 ür Kernphysik at the Johannes Gutenberg University Mainz for giving us the opportunity to take data at the MAMI beam.

Backup Slides

• Dirk Wiedner, on behalf of the Mu3e collaboration

HV-MAPS Backup

 Dirk Wiedner, on behalf of the Mu3e collaboration

Prototype Overview

Prototype	Active Area	Functionality	Bugs	Improvements
MuPix1	1.77 mm ²	Sensor + analog	Comparator "ringing"	First MuPix prototype
MuPix2	1.77 mm ²	Sensor + analog	Temperature dependence	No ringing
MuPix3	9.42 mm ²	Sensor, analog, dig.	bad pixel on/off ,	First part of dig. readout
MuPix4	9,42 mm ²	Sensor, analog, dig.	Zero time-stamp and row address for 50% of pixels	Working digital readout, timestamp , temperature stable
MuPix6	10.55 mm ²	Sensor, analog, dig.	?	Removed zero time-stamp and address bug
MuPix7	10.55 mm ²	System on Chip	X-talk	Fast serial readout
MuPix8	160 mm ²	Large S.o.C.	First batch has metal 3 issues	Large, Time walk correction

• Dirk Wiedner, on behalf of the Mu3e collaboration

Full System on Chip

- 180 nm HV-CMOS
- Pixel matrix:
 - o 40 x 32 pixels
 o 103 x 80 µm² each
- Analog part

 Temperature tolerant
- Digital part

 Full system on chip

Sensor + Analog + Digital

Chip Readout

On Chip:

- Zero suppression
- Read-out state machine
- PLL and VCO
- Fast serializer
- > 1.25 Gbit/s LVDS output

Eye diagram MuPix7; eye height > 130mV, eye width > 0.65 UI

Spatial Resolution

- Pixel size 80 µm x 103 µm
- Measured track residuals:
 - \circ RMS x = 38.1 ± 0.1 µm
 - \circ RMS y = 30.6 ± 0.1 µm

X-talk

- MuPix7
- PSI October 2015

 250 MeV e⁺/µ⁺/pion
- X-talk between
 - o **Rows**
 - o Around 10%

X-talk

- MuPix7
- PSI October 2015

 250 MeV e⁺/µ⁺/pion
- X-talk between
 o Rows
- Capacitive coupling
 - Line from diode to comparator
 - Strongly depends on layout

Efficiencies

>99.5% efficiency

- 4 GeV electrons@DESY
- 90° impact angle
- Individual pixel thresholds

MuPix7 Efficiency

Efficiencies rotated Sensor

>99.8% efficiency

- 4 GeV electrons
- 30° impact angle
- Individual pixel thresholds

MuPix7 under angle

MuPix7 Efficiency

Time Stamps

- Time difference of hits registered in MuPix 7 and scintillator
- 4 GeV electrons
- Sampling rate is 62.5 MHz

Time Resolution of Pixels

Setup March 2016 Test-Beam @ DESY

- Beam-line TB22
 o up to 5 GeV electrons
- Aconite telescope
- MuPix7 prototype
- Readout setup from PI Heidelberg

MuPix7 @ DESY test-beam in EUDET telescope

Sub-Pixel Efficiencies

- Hit efficiency map and projections for 2×2 pixel array
- 4 GeV electrons
- Bias voltage –40V to enhance the inefficient regions
- Studies for MuPix8 ongoing

MuPix7

Temperature Dependence

0.76

T = 0 °C

- Pulse shape vs temperature
 - Injection pulse to pixel discriminator output
- Climate chamber

 0°C, 20°C, 40°C, 60°C
- Significant change to
 Pulse shape
 Signed graphitude
 - Signal amplitude
- slight change to time resolution
 - Re-calibration

T = 20 °C 0.74 = 40 °C 0.72 Threshold [V] 0.7 0.68 0.66 0.64 0.62 0.6 50 0 100 150 200 250 300 350 400 450 500 550 600 time [ns]

Pulseshape (Injection = 0.5 V)

MUPIX7 High bias currents (1W/cm²) HV -85V

Temperature Dependence

- Pulse shape vs temperature
 - Injection pulse to pixel discriminator output
- Climate chamber

 0°C, 20°C, 40°C, 60°C
- Significant change to
 - Pulse shape
 - Signal amplitude
- Slight change to time resolution
 - \succ Re-calibration

MuPix8 still under investigation

Challenges

Challenges

- High rates: $10^8 \,\mu/s$
- Good timing resolution: 100 ps
- Good vertex resolution: ~200 µm
- Excellent momentum resolution: ~ 0.5 MeV/ c^2
- Extremely low material budget:
 - > $1 \times 10^{-3} X_0$ (Si-Tracker Layer)
- HV-MAPS spectrometer
 - \succ 50 µm thin sensors
 - ➤ B ~1 T field
- + Timing detectors

$\mu \rightarrow eee \ vs.$ $\mu \rightarrow e\gamma \ and \ \mu N \rightarrow eN$

• Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 86

Mag

e⁺

The Mu3e Background

- Irreducible background: $\mu^+ \rightarrow e^+e^-e^+\nu\nu$
- $\sum E_e < m_\mu c^2$
- $\sum \overrightarrow{p_e} \neq 0$

Good momentum resolution

no cuts on $\not{E} \quad \mathcal{V}$ $\not{E} \leq 20 \text{ MeV}$ $\not{E} \leq 10 \text{ MeV}$ $\not{E} \leq 5 \text{ MeV}$ $\not{K} \text{ factor}$

K factor

e

G. M. Pruna, A. Signer, Y. Ulrich arXiv:1611.03617v1

Dirk Wiedner, on behalf of the Mu3e collaboration

Outlook: Phase I performance Simulation

SciFi Backup

• Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 89

Timing Detectors

 Combinatorial background suppression by a factor of 100 needed

Horizontal gap between fibers ~ 4 µm

• Dirk Wiedner, on behalf of the Mu3e collaboration

 Dirk Wiedner, on behalt of the Mu3e collaboration

25.07.2018 • 92

Si-PMs (MPPCs) at both fiber ends

SciFi column readout with Si-PM arrays

LHCb type detector

- 64 channel monolithic device (custom design)
- ~250 µm effective "pitch"
- 50 µm × 50 µm pixels
- Grouped in 0.25 mm × 1 mm vertical columns
- Common bias voltage

Si-PMs (MPPCs) at both fiber ends

SciFi column readout with Si-PM arrays

LHCb type detector

 \bigcirc Reduced # of readout channels (2 × 64)

- Easy, direct coupling
- Higher occupancy
- ☺ "Optical" cross talk

• Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 95

STiC

25.07.2018 • 96

Readout Electronics

- Mutrig ASIC (KIP)
- Fulfills SciFi requirements
 - Compact design
 - Installation very close to Si-PM arrays
 - o 32 channels
 - 4 chips / Si-PM array
 - Assuming MuTRiG can sustain ~10 MHz hitrate
- Performance to be tested
 o In particular for low photon yield

Alternative Design with Square Fibers

2-3 layers of 250 μm square double cladding scint. fibers128 fibers/layer

Single fiber Al coating (minimum "optical" cross-talk)

Testing Square Fibers

Fiber test setup developed at PSI

250 µm square fiber

timing performance

Cross talk:

By sputtering 30 nm Al coating on the fiber cross talk < 1% was achieved

• Dirk Wiedner, on behalf of the mose collaboration

0.5 Nphe threshold $\sigma = 750 \pm 17 \text{ ps}$

Tile Detector Backup

 Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 99

Tile Time Resolution

- Coincidence between 2 tiles in a row
- Time resolution \approx 70 ps
- Time-walk effect \approx 14 ps

Efficiency

- Require hit in first & last column
- Look for hit in middle
 channel
- Efficiency > 99.5%

Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 101

Tile Detector

- Scintillating tiles
 - 6.5 x 6.5 x 5.0 mm³
- 7 Tile Modules per station
 - o 448 tiles/module
 - Attached to end rings
- SiPMs attached to tiles
 - Distribution PCBs below
 - Readout through MuTRiG

Tile detector 4 x 4 prototype

STiC Readout

- Developed at KIP for EndoTOFPET-US
 Optimized for ToF applications
- Key features:
 - Digital timing & energy information

- o 64 channels (version 3.0)
- o 50 ps TDC bins
- SiPM bias tuning
- SiPM tail cancelation possibility (version 3.0)
- Currently ≈ 1 MHz hit rate / chip
- Up to \approx 20 MHz in future version
- Version 2.0 successfully operated in test-beam

STiC 2.0

STiC 3.0

STiC Readout

- Developed at KIP for EndoTOFPET-US
 Optimized for ToF applications
- Key features:
 - Digital timing & energy information

- o 64 channels (version 3.0)
- o 50 ps TDC bins
- SiPM bias tuning
- SiPM tail cancelation possibility (version 3.0)
- \circ Currently ≈ 1 MHz hit rate / chip
- \circ Up to ≈ 20 MHz in future version
- Version 2.0 successfully operated in test-beam

STiC 2.0

STiC 3.0

STiC Test Beam

STiC Test Beam

Dirk Wiedner, on behalf of the Mu3e collaboration

STiC Test Beam

• Dirk Wiedner, on behalf of the Mu3e collaboration

Tile Detector

Submodule:

- In total 32 channel
- 3 x 3mm² SiPMs
- FEBA flex printed PCB
- MuTrig ASIC in BGA package
- Scintillator tiles Ej-228

 6.5 x 6.5 x 5mm³
 two types: center and edge
- ESR reflected foil, individual tile wrapping

Rendering of Tile Detector sub module

Tile Prototype

- Technical prototype build this year
- Develop assembly tools for mass production
- Tested with electron beam @ DESY (2-7 GeV)
- Excellent light yield
- Low crosstalk

Prototype on cooling structure 25.07.2018 • 109

• Dirk Wiedner, on behalf of the Mu3e collaboration

Mechanics Backup

• Dirk Wiedner, on behalf of the Mu3e collaboration

- Conical target
- Inner double layer
 8 and 10 sides of 2 x 12 cm²
- Outer double layer
 24 and 28 sides of 2 x 36 cm²
- Re-curl layers
 - 24 and 28 sides of 2x 36 cm²
 Both sides

Recurl pixel layers

Scintillator tiles

Inner pixel layers

Target

Scintillar, ng fibres

Outer pixel layers

μ Beam

- Conical target
- Inner double layer

 8 and 10 sides of 2 x 12 cm²
- Outer double layer
 24 and 28 sides of 2 x 36 cm²
- Re-curl layers
 - 24 and 28 sides of 2x 36 cm²
 Both sides

Recurl pixel layers

Scintillator tiles

Inner pixel layers

Target

Scintillating fibres

Outer pixel layers

μ Beam

- Conical target
- Inner double layer

 8 and 10 sides of 2 x 12 cm²
- Outer double layer
 24 and 28 sides of 2 x 36 cm²
- Re-curl layers
 - 24 and 28 sides of 2x 36 cm²
 Both sides

Recurl pixel layers

Scintillator tiles

Inner pixel layers

Target

Scintillating fibres

μ Beam

- Conical target
- Inner double layer

 8 and 10 sides of 2 x 12 cm²
- Outer double layer
 24 and 28 sides of 2 x 36 cm²
- Re-curl layers
 - \circ 24 and 28 sides of 2 x 36 cm²
 - Both sides

108 inner sensors 2736 outer sensors ~180 000 000 pixel

Outer pixel layers

Sandwich Design

• HV-MAPS

Thinned to 50 µm
Sensors 2 x 2 cm²

Kapton[™] flex print
 25 µm Kapton[™]
 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

0.11% of X₀

Thinned Pixel Sensors

HV-MAPS*

- Thinned to 50 µm
 Sensors 2 x 2 cm²
- Kapton[™] flex print
 25 µm Kapton[™]
 14 µm Alu traces
- KaptonTM Frame Modules
 25 µm foil
 Self supporting
- Alu end wheels

 Support for all detectors

MuPix3 thinned to < 90µm

• Dirk Wiedner, on behalf of the Mu3e collaboration

KaptonTM Flex Print

• HV-MAPS

 $_{
m O}$ Thinned to 50 μm

 \circ Sensors 2 x 2 cm²

Kapton[™] flex print

- o 25 µm Kapton™
- o 14 µm Alu traces

Kapton[™] Frame Modules o 25 µm foil o Self supporting

Alu end wheels

 Support for all detectors

Laser-cut flex print prototype

Pixel Modules

• HV-MAPS

 $_{
m O}$ Thinned to 50 μm

- \circ Sensors 2 x 2 cm²
- Kapton[™] flex print
 25 µm Kapton[™]
 - \circ 14 μ m Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting

Alu end wheels Support for all detectors

• Dirk Wiedner, on behalf of the Mu3e collaboration

CAD of Kapton[™] frames

Overall Design

• HV-MAPS

 $_{
m o}$ Thinned to 50 μm

- \circ Sensors 2 x 2 cm²
- Kapton[™] flex print
 - o 25 µm Kapton™
 - o 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels
 - Support for all detectors

- Two halves for layers 1+2
- 6 modules in layer 3
- 7 modules in layer 4

CAD of Kapton[™] frames

• Dirk Wiedner, on behalf of the Mu3e collaboration

Inner Layers

• HV-MAPS

 $_{
m o}$ Thinned to 50 μm

 \circ Sensors 2 x 2 cm²

Kapton[™] flex print 25 µm Kapton[™]

o 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

Rendering of vertex detector CAD

Outer Module

- HV-MAPS
 - $_{
 m O}$ Thinned to 50 μm
 - \circ Sensors 2 x 2 cm²
- Kapton[™] flex print
 o 25 µm Kapton[™]
 - 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels

 Support for all detectors

Layer 3 Prototype in Assembling Frame with 50 μm Glass

Detector Frame

• HV-MAPS

 $_{
m o}$ Thinned to 50 μm

- \circ Sensors 2 x 2 cm²
- Kapton[™] flex print
 - o 25 µm Kapton™
 - o 14 µm Alu traces

Kapton[™] Frame Modules

- o 25 µm foil
- Self supporting
- Alu end wheels
 - Support for all detectors

Pixel detector CAD rendering

DAQ Backup

• Dirk Wiedner, on behalf of the Mu3e collaboration

Trigger-less DAQ

Trigger-less DAQ

Front End FPGAs

- FPGAs in magnet volume

 112 pieces
- Receive sensor data
 o 36-45 LVDS inputs
- 6.4 Gbit/s outputs

 8 optical links
 ... to counting house

Tasks, problems, challenges write_process : process(clkin, reset_n) begin

101.

void MudaqDevice::zero wrmem()

- if(reset_n = '0')then Hard-, firm- and software developments
- Testing custom designed front-end boards and bringing them to operation
- Data transmission studies o Electrical links
 - o Optical links
- Data reduction at front-end: Up to 45×1.25 Gbps $\rightarrow 1 \times 6$ Gbps with as little logic utilization as possible

Dirk Wiedner, on behalf of the Mu3e -120 mV collaboration

Front End Board V1.02

- Bug-fix of Front End Board V1.0
 - Extra resistors
 - Extra voltage regulator
- DC-DC for entire partition
- Eight PCBs produced
 Tested and ok

Front End Board V2.0

- Better FPGA
- FireFly optical transceivers
 - o Replace
 - MiniPods and
 - QSFP with
 - 2x Samtec FireFly 4-fold optical transceiver
 - Smaller, cheaper,...
 - Performance currently under evaluation (B.Sc. Thesis Benjamin Weinlaeder)

Dirk Wiedner, on behalf of the Mu3e collaboration

Trigger-less DAQ

Trigger-less DAQ

Switching Board

Switching Board

Switching Board

- PCle40
- Developed for LHCb and ALICE upgrade by CPPM (Marseille)
- 48 optical I/Os
- Optcial network switch fro Mu3e filter farm
- Mu3e will receive samples from the current production

Trigger-less DAQ

- Front end links
 - Pixel sensor to on-detector FPGA
 - 1250 Mbit/s
 - LVDS
 - Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - ... to readout boards
 - o 6.4 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - o ...to PC Farm

• Dirk Wiedner, on behalf of the Mu3e collaboration

GPU-PC

- PC with GPU
- 10 Gbit/s Fiber input

 8 inputs from sub-detectors
- Data filtering
 - Timing Filter on FPGA
 - Track filter on GPU
 - Data to tape < 100 MB/s

Dirk Wiedner, on behalf of the Mu3e collaboration

GPU computer

GPU-PC

- PC with GPU
- 10 Gbit/s Fiber input

 8 inputs from sub-detectors
- Data filtering
 - Timing Filter on FPGA
 - Track filter on GPU
 - Data to tape < 100 MB/s

FPGA PCIe board

GPU computer

Dirk Wiedner, on behalf of the Mu3e collaboration

Receiving FPGA board / PC side

- De5a-NET boards from Terasic
- Successfully tested at Mainz
- 8 out of 12 boards already acquired

DAQ tests Backup

• Dirk Wiedner, on behalf of the Mu3e collaboration

Front End Board V2.0

- Better FPGA
 - o ArriaV instead of StratixIVo Lower power consumption
 - 6.6W → 3.3W (<10W)
- FireFly optical transceivers

 2 x 1W
- Clock distribution chips

 SI5345 2 x 1W
- DC-DC only for FEB
 - FEAST2MD compatible
 - Or based on TI chip set i.e.
 LM27403

• Dirk Wiedner, on behalf of the Mu3e collaboration

1.5V

3 31

Readout Vertical Slice Test

- Pixel detector

 HV-MAPS (MuPix8)
 ✓ Large prototype
- Front end board

- Switching board

 PCle40
 Delivery 2018
- PC

• Dirk Wiedner, on behalf of the Mu3e collaboration

Readout Vertical Slice Test

- Pixel detector

 HV-MAPS (MuPix8)
 ✓ Large prototype
- Front end board

- Switching board

 PCle40
 Delivery 2018
- PC

• Dirk Wiedner, on behalf of the Mu3e collaboration

collaboration

Backup Area Planning

• Dirk Wiedner, on behalf of the Mu3e collaboration

Mu3e Magnet

- 1T solenoid
- 3m long
- 1m bore diameter
- Superconducting coil
- Dry cryo system
- Magnet TDR ready
- Delivery early 2019

PSI µ-Beam

Paul Scherrer Institute Switzerland:

- 2.2 mA of 590 MeV/c protons
- Surface muons from target E
- Up to $\sim 10^8 \,\mu/s$

 $> > 10^{15}$ muon decays per year

Good progress in terms of

CAD, civil engineering for:

- ✓ Platforms
- ✓ Access ways
- Counting containers
- ✓ Power
- ➤ Cooling

Remark:

Space in area
 extremely limited

Good progress in terms of

CAD, civil engineering for:

- ✓ Platforms
- ✓ Access ways
- Counting containers
- ✓ Power
- Cooling

Remark:

Space in area
 extremely limited

Good progress in terms of

CAD, civil engineering for:

- ✓ Platforms
- ✓ Access ways
- Counting containers
- ✓ Power
- ➤ Cooling

Remark:

Space in area
 extremely limited

- Good progress in terms of
- CAD, civil engineering for:
- ✓ Platforms
- ✓ Access ways
- Counting containers
- ✓ Power
- ➤ Cooling
- Remark:
- Space in area
 extremely limited

PSI µ-Beam

Paul Scherrer Institute Switzerland:

- 2.2 mA of 590 MeV/c protons
- Surface muons from target E
- Up to $\sim 10^8 \,\mu/s$
- $> > 10^{15}$ muon decays per year

Area Layout

• Dirk Wiedner, on behalf of the Mu3e collaboration

Cooling Backup

• Dirk Wiedner, on behalf of the Mu3e collaboration

Simulation

He cooling 400mW/cm²

• Dirk Wiedner, on behalf of the Mu3e collaboration

Test Results

- 1:1 Prototype
 - Layer 3+4 of silicon tracker
 Ohmic heating 400mW/cm²
- Cooling He

 at several m/s
- Temperature sensors attached to foil

 LabVIEW readout
- Results promising
 - ΔT < 60°K</p>
 - No sign of vibration in air

Cooling Concept

- Liquid cooling
 - Timing detectors
 - Front end boards
 - DC-DC boards
 - Wiener LV crates
 Filter farm racks
- Gaseous He cooling
 - For Silicon tracker
 - General cooling inside magnet

Tile cooling simulation

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 - V-shapes
 - Outer surface
 - In between layers
 - Between SciFi and layers

 $400 \text{mW/cm}^2 \times 11376 \text{cm}^2$ = 4.5504 KW

Pixel helium cooling BVR49

Design status - Supplies

Required target flows per helium circuit:

Volume	He flow speed m/s	Cross-section cm ²	Volume cm ³	Occurence times	Volumetric flow m ³ /min
Gap L1/L2	10	12	148	1	0.72
Gap SciFi/L3	10	39	1320	1	2.3
Gap Tile/L3	10	34	1150	2	4.2
V-folds L3	20	3.3	114	3	1.2
Gap L3/L4	10	60	2185	3	10.8
V-folds L4	20	3.9	141	3	1.4
Global flow	0.5	7600	912000	1	23
Total		7750			43

 \Rightarrow Volumes differ up to factor ≈ 20

Dirk Wiedner, on behalf of the Mu3e collaboration

Pixel helium cooling BVR49

- Multiple He cooling circuits
- Volumetric flow between
 - \circ 0.72 m³/min. and
 - 23 m³/min.
- Separately fine adjustable
- Segment overall He system?
 o Introduce redundancy

He cooling requirements

- Cooling power
 - Pixel power dissipation 4.55kW
 - Enough reserve
- Up to $50 \text{ m}^3/\text{min}$.
- Reliable start up procedure
- Reliable emergency reaction
- Good temperature stability
- Dry and clean
- He recovery system

• Dirk Wiedner, on behalf of the Mu3e collaboration

He cooling system

• Dirk Wiedner, on behalf of the Mu3e collaboration

Water cooler

- 10kW chiller in HD

 Commissioned 2016
 Massive
- 2.25kW chiller in HD

 Borrowed from H1
 Commissioned in 2016
 Intermediate size
- Extra chiller required?

Copyright Parker

Heat exchanger

- 10kW heat exchanger in HD
- Water to He
- Industry standard

Helium buffer

- Large He buffer
- Over pressurized
- Store cold He
- Eliminate vibrations from pumps
- Delivers He in case
 pump stops

He recovery

- He in closed system
- Drying system
- Remove other gases
 - Membrane filter
 - Very efficient for air/He separation

Membrane

Control and quality monitor

- Slow control system for
 - o Pumps
 - o Chillers
 - o Valves
- Safety system
 - o Shutdown
 - o Humidity

- Monitoring
 - o Temperatures
 - o Pressures
 - o Flows
 - o Humidity
 - Contaminations

Piping

- Volumetric flow high

 50m³/min.
- ≥20cm diameter pipes
- Insulated
- Flexible (?)

automotiveworld

Pump(s)

- Large throughput
 Op to 50m³/min.
- Little overpressure

 500 mbar ok
- Must run constantly
- Must not contaminate the He
- Contact air conditioning experts?

Installation space

- System of very large devices
- Vibrations from
 - o Pumps
 - o Chillers
- Large pipes

Summary

- He cooling system is:
 - o Large
 - o Complex
 - Safety relevant
- Chillers and He heat exchanger in HD
- Pumps, pipes, valves, recovery system and control system to be acquired/designed

He Properties

•	Molecular weight :	4.0026 g/	mol			
•	Gaseous phase					
•	Gas density (1.013 bar at boiling point) :	16.752 kg	/m ³			
•	Gas density (1.013 bar and 15 °C (59 °F)) :	0.1692 kg	/m ³			
•	Compressibility Factor (Z) (1.013 bar and 15 °C (59 °F)) : 1.0005					
•	Specific gravity :	0.138				
•	Specific volume (1.013 bar and 25 °C (77 °F)) :	6.1166 m ²	³ /kg			
•	Heat capacity at constant pressure (Cp) (1.013 bar ar	nd 25 °C (7 0.0208 kJ,	7 °F)) : /(mol.K)			
•	Heat capacity at constant volume (Cv) (1.013 bar and	d 25 °C (77 0.0125 kJ,	′ °F)) : /(mol.K)			
•	Ratio of specific heats (Gamma:Cp/Cv) (1.013 bar an	d 25 °C (7 1.6665	7 °F)):			
•	Viscosity (1.013 bar and 0 °C (32 °F)) :	1.8695E ⁻⁰⁴	Poise			
•	Thermal conductivity (1.013 bar and 0 °C (32 °F)) : • Dirk Wiedner, on behalf of the Mu3e collaboration	146.2 mW	//(m.K) 25.07.2018 ● 171			

Air Properties

•	Molecular weight :	28.96 g/r	nol			
•	Gaseous phase					
•	Gas density (1.013 bar at boiling point) :	3.2 kg/m	3			
•	Gas density (1.013 bar and 15 °C (59 °F)) :	1.225 kg/	′m ³			
•	Compressibility Factor (Z) (1.013 bar and 15 °C (59 °F)) : 0.9996					
•	Specific gravity :	1				
•	Specific volume (1.013 bar and 25 °C (77 °F)) :	0.8448 m	³ /kg			
•	Heat capacity at constant pressure (Cp) (1.013 bar ar	nd 25 °C (7 0.0291 kJ	77 °F)) : /(mol.K)			
•	Heat capacity at constant volume (Cv) (1.013 bar and	d 25 °C (77 0.0208 kJ	7 °F)) : /(mol.K)			
•	Ratio of specific heats (Gamma:Cp/Cv) (1.013 bar an	d 25 °C (7 1.4018	7 °F)):			
•	Viscosity (1 bar and 0 °C (32 °F)) :	1.721E ⁻⁰⁴	Poise			
•	Thermal conductivity (1.013 bar and 0 °C (32 °F)) :	24.36 mV	V/(m.K)			
	Dirk Wiedner, on behalt of the Mu3e collaboration		25.07.2018 • 172			

Liquid Cooling

- Beam pipe cooling
 - With cooling liquid
 - 5°C temperature
 - Significant flow possible
 - ... using grooves in pipe
- For electronics
 - FPGAs and
 - Power regulators
 - Mounted to cooling plates
- Total power several kW

Old design study

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 Distribution to Frame
 - V-shapes
 - Outer surface

Temperatures between 20°C to 70°C ok.

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume

Local flow for Tracker

- Distribution to Frame
 - V-shapes
 - Outer surface

Old design study

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 - Distribution to Frame
 - V-shapes
 - Outer surface

Old design study

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Distribution in Frame
 - Local flow: V-shapes
 - Gap flow: Outer surface

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 Distribution to Frame
 - V-shapes
 - Outer surface

Old design study

- Gaseous He cooling
 - Low multiple Coulomb scattering
 - He more effective than air
- Global flow inside Magnet volume
- Local flow for Tracker
 Distribution to Frame
 - V-shapes
 - Outer surface

Old design study

Full scale prototype

- Layer 3+4 of silicon tracker
- Ohmic heating (150mW/cm²)
- o 561.6 W for layer 3 +4
- o ... of Aluminum-Kapton™
- Cooling with external fan

 Air at several m/s
- Temperature sensors attached to foil

 LabView readout
- First results promising $\circ \Delta T < 60^{\circ} K$

• Dirk Wiedner, on behalf of the Mu3e collaboration

Tests

- Full scale prototype
 - Layer 3+4 of silicon tracker
 - Ohmic heating (150mW/cm²)
 - o 561.6 W for layer 3 +4
 - o ... of Aluminum-Kapton™
- Cooling with external fan

 Air at several m/s
- Temperature sensors attached to foil

 LabView readout
- First results promising $\circ \Delta T < 60^{\circ} K$

Test Results

Full scale prototype

- Layer 3+4 of silicon tracker
- Ohmic heating (150mW/cm²)
- o 561.6 W for layer 3 +4
 o ... of Aluminum-Kapton[™]
- Cooling with external fan

 Air at several m/s
- Temperature sensors attached to foil

 LabView readout
- First results promising
 - ΔT < 60°K</p>
 - No sign of vibration in air

Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 183

Comparison Simulation and Tests

Comparison Simulation He and Air He Air

$v = 4.0 \ m/_{s}$

Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 185

He Cooling 750 mW/cm²

• Dirk Wiedner, on behalf of the Mu3e collaboration

25.07.2018 • 186