

Dirk Wiedner Physikalisches Institut der Universität Heidelberg on behalf of the Mu3e silicon detector collaboration

### From Tracking to Pixel Sensors

 $\bullet$   $\bullet$   $\bullet$ 

Tracking

- Decay point
  - Primary vertex:
  - Tracks of decay products point to primary vertex
- Momentum
  - Charged particles are bend in magnetic fields
  - $\circ$  Curvature  $\rightarrow$  momentum
- Particle identification

   Match information of sub-detectors



## Tracking

 $e^+$ 

Target

🗧 μ Beam

- Decay point
  - Primary vertex:
  - Tracks of decay products point to primary vertex
- Momentum
  - Charged particles are bend in magnetic fields
  - $\circ$  Curvature  $\rightarrow$  momentum
- Particle identification

   Match information of sub-detectors
  - Secondary vertex

В

# Tracking

- Decay point
  - Primary vertex:
  - Tracks of decay products point to primary vertex
- Momentum
  - Charged particles are bend in magnetic fields
  - $\circ$  Curvature  $\rightarrow$  momentum
- Particle identification
  - Match information of sub-detectors
  - Secondary vertex



## **Tracking resolution**

### Cell size dominated Scattering dominated



# **Tracking Detectors**

- Gas detectors
  - Wire chamber
  - Straw tubes
  - Time Projection Chamber
  - 0 ...
- Silicon detectors
  - Silicon strip
  - Silicon pixel
  - 0 ...
- Scintillating fiber trackers





CDF central wire chamber

LHCb outer tracker straw tubes



ALICE TPC

# **Tracking Detectors**

- Gas detectors
  - Wire chamber
  - Straw tubes
  - Time Projection Chamber

0 ...

- Silicon detectors
  - Silicon strip
  - Silicon pixel

0 ...

 Scintillating fiber trackers



Silicon strip prototype (NRL)





SciFi (RWTH)

### Gas detectors

#### 🕂 Cheap

Large surface possible

### 🛃 Light weight

Low multiple scattering

#### 🛃 Well known technology

Production at institute

#### 🛃 Low power

Amplifiers outside active volume

### - Ageing

- Gas contents react chemically

#### Little granularity

- Spatial resolution limited
- Some types are slow

### Gas detectors

#### 🕂 Cheap

- Large surface possible
- 🛃 Light weight
  - Low multiple scattering
- 🛃 Well known technology
  - Production at institute
- 🛃 Low power
  - Amplifiers outside active volume
- Ageing
  - Gas contents react chemically
- Little granularity
  - Spatial resolution limited
- Some types are slow

### Gas detectors

### 🕂 Cheap

Large surface possible

### 🛃 Light weight

Low multiple scattering

### 🛃 Well known technology

Production at institute

### 🛃 Low power

- Amplifiers outside active volume
- Ageing
  - Gas contents react chemically

### Little granularity

- Spatial resolution limited
- Some types are slow

- Very good resolution
- 🖶 Fine granularity
  - Pixel: 15 x 15 μm<sup>2</sup>
- Radiation hard
  - 10<sup>16</sup> 1MeV neutron eq. /cm<sup>2</sup>
- 🕂 Fast
  - Drift Charge Collection
- High power
   Pre-amplifiers in active volume
- Expensive
- More material than gas chambers
  - Multiple scattering
- Production by outside company

### Gas detectors

### 🕂 Cheap

Large surface possible

### 🛃 Light weight

Low multiple scattering

### 🛃 Well known technology

Production at institute

#### 🛃 Low power

- Amplifiers outside active volume
- Ageing
  - Gas contents react chemically

### - Little granularity

- Spatial resolution limited
- Some types are slow

- Very good resolution
- Fine granularity
  - Pixel: 15 x 15 μm<sup>2</sup>
- Radiation hard
  - 10<sup>16</sup> 1MeV neutron eq. /cm<sup>2</sup>
- 🕂 Fast
  - Drift Charge Collection
- High power
   Pre-amplifiers in active volume
- Expensive
- More material than gas chambers
  - Multiple scattering
- Production by outside company

- PN-Diode

   Fully depleted
   100-500V
  - Silicon Strip

     O(10) cm long
    - O(50) µm wide
    - Extra readout chip
  - Silicon Pixel
    - Ca. 50 x 50 μm<sup>2</sup>
    - Hybrid extra readout
    - Monolithic integrated readout



### Working Principle of Silicon Detectors

 $\bullet$   $\bullet$   $\bullet$ 

### **PN-Junction**

• PN-Diode



## **Depletion Zone**

- PN-Diode
- Reverse voltage
   Depletion zone



# **Depletion Zone**

- PN-Diode
- Reverse voltage
   Depletion zone
  - Full depletion for high efficiency



# **Charged Particle Track**

- PN-Diode
- Reverse voltage
   Depletion zone
  - Full depletion for high efficiency
- Charge particle tracks

   electron hole pairs



# Charge Drift

- PN-Diode
- Reverse voltage
  - Depletion zone
  - Full depletion for high efficiency
- Charge particle tracks
  - electron hole pairs
  - Drift towards electrodes
    - Diffusion much slower



# **Charge Collection**

- PN-Diode
- Reverse voltage
  - Depletion zone
  - Full depletion for high efficiency
- Charge particle tracks
  - electron hole pairs
  - Drift towards electrodes
  - Charge collection and pre-amplification



Gas detectors

- 🛃 Cheap
- 🛃 Light weight
- Well known technology
- 🛃 Low power
- Ageing
- Little granularity
- Some types are slow

- Very good resolution
- Fine granularity
- 🛃 Radiation hard
- 🕹 Fast
- High power
- Expensive
- More material than gas chambers
- Production by outside company

## Hybrid Silicon Pixel

- Very good resolution
- 🕂 Fine granularity
  - Pixel: 55 x 55 µm<sup>2</sup>
- Radiation hard
  - 10<sup>16</sup> 1MeV neutron eq. /cm<sup>2</sup>
- 🕂 Fast
  - Drift Charge Collection



#### MediPix (Michal Platkevič Uni Prag)

## Hybrid Silicon Pixel

- Very good resolution
- Fine granularity
  - Pixel: 55 x 55 μm<sup>2</sup>
- Radiation hard
  - 10<sup>16</sup> 1MeV neutron eq. /cm<sup>2</sup>
- 🕂 Fast
  - Drift Charge Collection
- High power
  - Pre-amplifiers in active volume
- Expensive
- More material than gas chambers
  - Multiple scattering
- Production by outside company



MediPix (Michal Platkevič Uni Prag)

Gas detectors

- 🕂 Cheap
- 🛃 Light weight
- Well known technology
- Low power
- Ageing
- Little granularity
- Some types are slow

Silicon detectors

- Very good resolution
- Fine granularity
- 🛃 Radiation hard

🛃 Fast

- High power
- Expensive
- More material than gas chambers
- Production by outside company

• • •

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- Reversely biased

| N wel | NMOS    | PMOS |  |
|-------|---------|------|--|
| Psu   | ostrate |      |  |

#### by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- Reversely biased ~60V
  - Charge collection via drift
  - ➤ Fast O(10 ns)
  - $\circ$  Thinning to < 50  $\mu$ m possible



#### by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

- High Voltage Monolithic Active Pixel Sensors
- HV-CMOS technology
- Reversely biased ~60V
  - Charge collection via drift
  - ➤ Fast O(10 ns)
  - $\circ$  Thinning to < 50  $\mu$ m possible
- Integrated readout electronics
  - Pre-amplifier
  - Digital readout
    - Discriminator
    - Time stamp and address
    - Zero suppression



#### by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

- Monolithic active pixel sensor.
- Pixel electronics based on CMOS.
- Implemented in commercial technologies.
- PMOS and NMOS transistors are placed inside the shallow nand p-wells.



• A deep n-well surrounds the electronics of every pixel.



• The deep n-wells isolate the pixel electronics from the p-type substrate.



RESMDD 2012, Firenze, Ivan Peric

- The substrate can be biased low without damaging the transistors.
- In this way the depletion zones in the volume around the n-wells are formed.
- => Potential minima for electrons



#### RESMDD 2012, Firenze, Ivan Peric

- Charge collection occurs by drift
  - o main part of the signal



#### RESMDD 2012, Firenze, Ivan Peric

- Charge collection occurs by drift

   main part of the signal
- Additional charge collection by diffusion.



- HVCMOS sensors can be implemented in any CMOS technology
  - o that has a deep-n-well surrounding low voltage p-wells.
  - We have successfully used TSMC 65nm: 2.5 μm pixels.
- We expect the best results in high-voltage technologies:
  - These technologies have deeper n-wells and
  - the substrates of higher resistances than the LV CMOS.



RESMDD 2012, Firenze, Ivan Peric

- Example AMS 350 nm HVCMOS:
  - Typical reverse bias voltage is 60-100 V and
  - $\circ$  the depleted region depth ~15 µm.
- 20 Ωcm substrate resistance ->
   > acceptor density ~ 10<sup>15</sup> cm<sup>-3</sup>.
- E-field: 100 V/15 μm or 67 kV/cm or 6.7 V/μm.



#### RESMDD 2012, Firenze, Ivan Peric
- 180 nm HV-CMOS
  - Pixel matrix:
    42 x 36 pixels
    30 x 39 µm<sup>2</sup> each
- Ivan Peric ZITI
  - Analog part almost final
  - Digital part under development



MuPix2

- 180 nm HV-CMOS
  - Pixel matrix:
    40 x 32 pixels
    92 x 80 µm<sup>2</sup> each
- Ivan Peric ZITI
  - Analog part almost final
  - Digital part under development



MuPix3

- 180 nm HV-CMOS
- Pixel matrix:
  40 x 32 pixels
  92 x 80 µm<sup>2</sup> each
- Ivan Peric ZITI
  - Analog part almost final
  - Digital part under development



## Sensor + Analog + Digital



## Analog Electronics MuPix



## **Test Results**

 $\bullet \quad \bullet \quad \bullet$ 

Taken from: A.-K. Perrevoort, Characterization of High-Voltage Monolithic Active Pixel Sensors for the Mu3e Experiment, Master's thesis, University of Heidelberg, 2012.

## **Timing Tests**

- Timing critical

   10<sup>9</sup> particles/s
   O(10 ns) resolution
- LED pulsed sensor
- Double pulse resolution



## **Timing Tests**

- LED pulsed sensor
- Double pulse resolution
   Visible in oscilloscope —



## **Timing Tests**



## **Double Pulse Resolution**

- Ratio of
  - o resolved to
  - o unresolved double pulses
- 5.27 ± 0.01 µs

#### Ratio of unresolved Double Pulses



## **Double Pulse Resolution**

- Ratio of

   resolved to
   unresolved double pulses
- Default: 5.27 ± 0.01 μs
- Pixel bias current adjustment
- Optimized: 3.23 ± 0.01 µs
   Further reduction required

### Ratio of unresolved Double Pulses



- LED setup
- Test pulse latency
- + time over threshold



- LED setup
- Test pulse latency
- + time over threshold



- LED setup
- Test pulse latency
- + time over threshold
- ... for different thresholds



- LED setup
- Test pulse latency
- + time over threshold
- ... for different thresholds
- faster shaping needed



# Timing: Latency jitter

- Precise timing important for:
  - High occupancy
  - Short readout frames
- Latency between
  - signal-pulse and -
  - pixel response

...should be constant



# Timing: Latency jitter

- Latency between

   test-pulse and pixel response
   Latency 59.37 ± 1.63 ns
   Latency jitter 0.74 ± 0.18 ns
- > Fast
- But: Pulse height dependency
- Measure Time over Threshold
  - Pulse height
  - Time correction



### A.-K. Perrevoort

## Pixel resolution

- MuPix2 prototype
- 170 GeV pion beam
- Used TimePix-telescope
- Pixel size:
  30 µm in x
  39 µm in y
- Resolution:
  - 0 11 µm in x
    0 15 µm in y
- Good resolution



# Signal to noise ratio

- Pre-amplifier at pixel
   o Low capacitance
  - Low noise
- Good signal to noise
- X-talk from digital readout possible
   Digital part on fringe
- Radiation damage increases noise...



# Proton irradiation

KIT (Karlsruhe) 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup> **RESMDD 2012, Firenze, Ivan Peric** 

## Irradiated device: CCPD2



### CAPPIX/CAPSENSE edgeless CCPD 50x50 µm pixel size

RESMDD 2012, Firenze, Ivan Peric

## Irradiation with protons at KIT 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>



## Irradiation with protons at KIT 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>



## Irradiation with protons at KIT 10<sup>15</sup> n



**RESMDD 2012, Firenze, Ivan Peric** 

## Irradiation with protons at KIT 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>





## Irradiation with protons at KIT 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>



### RESMDD 2012, Firenze, Ivan Peric

## Irradiation with protons at KIT ( $10^{15} n_{eq}/cm^2$ )



RESMDD 2012, Firenze, Ivan Peric

## **Radiation hardness**

- Irradiation test of HVCMOS sensors with:
  - o **neutrons** 10<sup>14</sup> n<sub>eq</sub> at Munich,
  - $\circ$  protons 10<sup>15</sup> n<sub>eq</sub> and 8 x 10<sup>15</sup> n<sub>eq</sub> 380 MRad at KIT and PS
  - x-rays 50MRad at KIT
- Two main effects are observed:
  - Reduction of the secondary signal part that is collected by diffusion
  - Increase of leakage current
- Good SNR can be achieved after irradiation
   o if the sensors are cooled to ~ 0°C
- Charge multiplication factor can further increase SNR
- Although we still do not understand all effects, the HVCMOS sensors seem to have a high radiation tolerance.

## **HV MAPS Properties**

- Good resolution
- 🛃 Fine granularity
- Radiation hard
- 🕂 Fast
- 🕂 Cheap
- Similar radiation length as gas detectors
- Medium power
- Production by outside company

## **HV MAPS Properties**

Gas detectors

- 🕂 Cheap
- Light weight
- Well known technology
- 🕂 Low power
- Ageing
- Little granularity
- Some types are slow

### Silicon detectors

- Very good resolution
- 🕂 Fine granularity
- Radiation hard
- 🕂 Fast
- High power
- Expensive
- Production by outside company
- More material than gas detectors

### HV-MAPS

- Good resolution
- 🕂 Fine granularity
- 🕂 Radiation hard
- 🕂 Fast
- 🕂 Cheap
- Similar material as gas chambers
- Medium power
- Production by outside company

HV-MAPS Based Detector: Mu3e Tracker

• • •

## **Physics Motivation**

### Lepton flavor violation?

Standard model:

• No lepton flavor violation



## **Physics Motivation**

Lepton flavor violation:  $\mu^+ \rightarrow e^+e^-e^+$ 



Standard model:

- No lepton flavor violation, but:
  - Neutrino mixing
  - Branching ratio  $< 10^{-50} \rightarrow \text{unobservable}$

## The Mu3e Signal

٩.,

- $\mu \rightarrow eee rare in SM$
- Enhanced in:
  - Super-symmetry
  - Grand unified models
  - Left-right symmetric models
  - Extended Higgs sector
  - Large extra dimensions



| μ+ |    | e+ |
|----|----|----|
| N  | Z' |    |
|    | e+ | e- |
|    | e+ | e  |

## The Mu3e Signal

- $\mu \rightarrow eee rare in SM$
- Enhanced in:
  - Super-symmetry
  - Grand unified models
  - Left-right symmetric models
  - Extended Higgs sector
  - Large extra dimensions





- ➢ Rare decay (BR<10<sup>-12</sup>, SINDRUM)
- For BR O(10<sup>-16</sup>)
  - >>10<sup>16</sup> muon decays
  - High decay rates O(10<sup>9</sup> muon/s)
# The Mu3e Background

Combinatorial background

 µ<sup>+</sup>→e<sup>+</sup>vv & µ<sup>+</sup>→e<sup>+</sup>vv & e<sup>+</sup>e<sup>-</sup>
 o many possible combinations

- Good time and
- Good vertex resolution required



## The Mu3e Background



(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

# Challenges

- High rates
- Good timing resolution
- Good vertex resolution
- Excellent momentum resolution
- Extremely low material budget

## Challenges

- High rates:  $10^{9} \mu/s$
- Good timing resolution: 100 ps
- Good vertex resolution: ~100 μm
- Excellent momentum resolution: ~ 0.5 MeV/ $c^2$
- Extremely low material budget:
  - >  $1 \times 10^{-3} X_0$  (Si-Tracker Layer)
- HV-MAPS spectrometer
  - $\succ$  50 µm thin sensors
  - ➤ B ~1 T field
- + Timing detectors





- Helium atmosphere
- 1 T B-field •

- Scintillating fiber tracker
- Recurl station
- Tile hodoscope



## The Mu3e Experiment



- Helium atmosphere
- 1 T B-field •

- Silicon pixel tracker
- Scintillating fiber tracker ullet
- **Recurl station**
- Tile hodoscope







- Muon beam  $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope

## The Mu3e Experiment



- Muon beam  $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope

#### Mu3e Silicon Detector

Recurl pixel lavers

Scintillator tiles

Inner pixel layers

Target

cintillating fibres

µ Beam

- Conical target
- Inner double layer
   12 and 18 sides of 1 x 12 cm
- Outer double layer
   24 and 28 sides of 2 x 36 cm
- Re-curl layers
  - 24 and 28 sides of 2x 72 cm
  - Both sides (x2)

180 inner sensors4680 outer sensors▶ 274 752 000 pixel

Outer pixel layers

# Lightweight Detector

#### Material

- HV-MAPS
- Flex print \_\_\_\_\_
- Kapton Frame

## Thinning

- 50 µm Si-wafers
   Commercially available
   HV-CMOS 75 µm (AMS)
- Single die thinning

   For chip sensitivity studies
   < 50 µm desirable</li>
  - o In house grinding?
  - Local company



nOvati

#### Flex Print

- Single Layer in active region
- Multilayer in "cable" end
- LVDS buffers at edge



## **Outer Double Layer**



## **Outer Doublet Design**



## Station Design



## Inner Double Layer



## **Station Prototype**



#### Mu3e 1Tbit/s Readout

• • •

# Digital Logic

Zero suppressed readout:

- Pixel logic:
  - Address generation
  - Time stamp
  - Column bus logic
- Column logic
  - Priority logic
  - o ... using tri-state bus
  - Fifo buffer
- Chip wide logic
  - Data frame generation
- Serializer(s)
  - 800 Mbit/s LVDS



# Digital Logic

Zero suppressed readout:

- Pixel logic:
  - Address generation
  - Time stamp
  - Column bus logic
- Column logic
  - Priority logic
  - ... using tri-state bus
  - Fifo buffer
- Chip wide logic
  - Data frame generation
- Serializer(s)
  - 800 Mbit/s LVDS



# Digital Logic

Zero suppressed readout:

- Pixel logic:
  - Address generation
  - Time stamp
  - Column bus logic
- Column logic
  - Priority logic
  - ... using tri-state bus
  - Fifo buffer
- Chip wide logic
  - Data frame generation
- Serializer(s)
  - 800 Mbit/s LVDS



## Data Acquisition

- 2.5 GHz muon decays
- 50 ns readout frames
- O(5000) pixel chips
   800 Mb/s readout links
- O(7500) scintillating fibers
- O(7000) timing tiles
   DRS readout
- 3 layers switching FPGAs
   Optical data links
- Online filtering



#### **Event Filter Farm**

- Trigger less readout
- GPU computers

   PCIe FPGA/optical input
   Tflop/s GPU
- 10x faster than CPU
  - Requires custom code
  - 🛃 Makes farm affordable

#### Optical mezzanine connectors





GPU computer

#### **Projected Sensitivity**



#### Schedule

- 2012 Letter of intent to PSI, tracker prototype, technical design, research proposal
- 2013 Detector construction
- 2014 Installation and commissioning at PSI
- 2015 Data taking at up to a few  $10^8 \mu/s$
- 2016+ Construction of new beam-line at PSI
- 2017++ Data taking at up to 3 ·10° μ/s



#### Institutes

- Mu3e collaboration:
  - o DPNC Geneva University
  - o Paul Scherrer Institute
  - o Particle Physics ETH Zürich Eidenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich
  - o Physics Institute Zürich University
  - Physics Institute Heidelberg University



o ZITI Mannheim

KIP Heidelberg



KIRCHHOFF-INSTITUT FÜR PHYSIK PAUL SCHERRER INSTITUT

102

## Summary

- High Voltage Monolithic Active Pixel Sensors
   combine good properties of
  - Gas detectors
  - Hybrid silicon detectors
- First prototypes look promising
  - Low noise
  - o Fast
  - Radiation hard
- First HV-MAPS detector system for Mu3e experiment



**Backup Slides** .

# Si-Layer Rad Length

- Radiation length per layer
  - o 2x 25 µm Kapton
    - X<sub>0</sub>= 1.75e-4
  - 15 µm thick aluminum traces (50% coverage)
    - X<sub>0</sub>= 8.42e-5
  - o 50 µm Si MAPS
    - $X_0 = 5.34e-4$
  - 10 µm adhesive
    - X<sub>0</sub>= 2.86e-5
- Sum: 8.22e-4 (x4 layers) • For  $\Theta_{min} = 22.9^{\circ}$ • X<sub>0</sub>= 21.1e-4



# Frame Support



- Support design light weight
  - Spokes combine all separate modules
  - Connected by metal beams
  - o ... running in bushings

# Cooling

- 2 m<sup>2</sup> silicon detector
- Up to 200mW/cm<sup>2</sup>
- $\geq$  4 kW cooling
- 60 °C maximum
- Gaseous helium
- Laminar flow
- Tests:
  - o Inductive heatingo Aluminum foil



#### Tools

- Kapton-Frame tools:
   Sensor on Flex print
  - Gluing groove
  - Vacuum lift
  - Tools are tested with
    - 25 µm Kapton foil
    - 50 µm glass
### Momentum Resolution

- Multiple scattering only
- Current design:
  - o 50 µm silicon
  - o 50 µm Kapton
  - Helium gas cooling
  - o 3 layer fiber tracker



### Mu3e complementary to MEG



# PSI µ-Beam

Paul Scherrer Institute Switzerland:

- 2.2 mA of 590 MeV/c protons
- Phase I:
  - Surface muons from target E
  - $\circ$  Up to a few 10<sup>8</sup>  $\mu$ /s
- Phase II:
  - New beam line at the neutron source: HIMB project (2y application)
  - Several 10<sup>9</sup> μ/s possible
  - $> > 10^{16}$  muon decays per year
  - ➢ BR 10<sup>-16</sup> (90% CL)







# **Timing Detectors**

- Fiber hodoscope
  - Before outer pixel layers
  - 250 μm scintillating fibers
  - o SiPMs
  - o 1 ns resolution
- Tile detector
  - After recurl pixel layers
  - 1x1 cm<sup>2</sup> scintillating tiles
  - o SiPMs
  - o 100 ps resolution



## Fiber Hodoscope

- 250 µm scintillating fibers
  - Kuraray SCSF-81M
  - double cladding
  - o 7500 in total
- Very high occupancies:
   24% in 50ns time frame
- Sampling readout
  - o SiPM
  - o DRS5 chip
  - From Stefan Ritt, PSI







#### **Tile Detector**

- 1x1 cm<sup>2</sup> scintillating tiles
   0(7000)
- GosSip simulation

   MPPC with 3600 pixels
   100 ps resolution (RMS)
   97% efficiency



## Summary

- Mu3e searches for lepton flavor violation
- > 10<sup>16</sup>  $\mu$ -decays  $\rightarrow$  BR < 10<sup>-16</sup> (90% CL)
- Silicon tracker with ~275M pixel
- HV-MAPS 50 µm thin
- Two SiPM based timing systems
- Prototypes look encouraging

