Probing Physics beyond the Standard Model with the Mu3e Experiment

> Ann-Kathrin Perrevoort for the Mu3e Collaboration

NIKHEF, Amsterdam (formerly Physics Institute, Heidelberg)

Flavour and Dark Matter Karlsruhe

September 26, 2018

Mu3e in a Nutshell

- Search for cLFV in $\mu \rightarrow eee$
- Observe $\mathcal{O}(10^{15})$ to $\mathcal{O}(10^{16})$ muons
- Precise tracking of $e^{\scriptscriptstyle +}/e^{\scriptscriptstyle -}$
- High geometric and momentum acceptance ($p_{\rm T} > 10 \, {\rm MeV}$)
- Online reconstruction of all tracks
- Filtering of μ \rightarrow eee candidates

- Current limit: BR < $1.0 \cdot 10^{-12}$ at 90 % CL (SINDRUM 1988) What can Mu3e achieve?
- What else can we look for with so many muon decays?

Outline

• $\mu \rightarrow$ eee in effective theories

• Dark photons in μ decays

• Lepton flavour violating two body decays $\mu \rightarrow e X$

Signal and Background

Signal μ^{+} \rightarrow $e^{+}e^{-}e^{+}$

- Common vertex
- Coincident
- $\sum E_{e} = m_{\mu}$
- $\sum \vec{p}_{e} = 0$

Combinatorial background

Background

- No common vertex
- Not coincident
- $\sum E_{e} \neq m_{\mu}$
- $\sum \vec{p}_{e} \neq 0$

Internal conversion $\mu^+ \rightarrow e^+ e^- e^+ \overline{\nu}_{\mu} \nu_e$

- Common vertex
- Coincident
- $\sum E_{e} < m_{\mu}$
- $\sum \vec{p}_{e} \neq 0$

A. Perrevoort (NIKHEF)

BSM Physics with Mu3e

Sensitivity to μ \rightarrow eee in Phase I

- Full Geant4-based detector simulation
- Generators of physics processes (SM and BSM)
- Track reconstruction and vertex fit

Sensitivity to μ \rightarrow eee in Phase I

Reconstructed $\mu \rightarrow$ eee events (signal and background)

- Long tracks only
- Cuts on $\Delta t_{e_ie_j}$, χ^2_{vertex} , $d_{vertex-target}$, $|\sum \vec{p_e}|$, m_{eee}
- Background-free with $2.6\cdot 10^{15}$ stopped μ
- Signal efficiency $17\,\%$

```
\Rightarrow~BR \geq 5.2 \cdot 10^{-15} at 90~\%~CL
```


Use an EFT approach to model possible New Physics

$$\mathcal{L}_{\mathsf{EFT}} = \sum_{\mathsf{i}} \frac{c_{\mathsf{i}}}{\Lambda^2} O_{\mathsf{i}}$$

- Kinematics differ for each operator
 - \rightarrow different sensitivities
 - → characteristic decay distributions
- Complementarity of $\mu \rightarrow$ eee, $\mu \rightarrow e \gamma, \ \mu \rightarrow e \ conversion$

Sensitivity to μ \rightarrow eee using Effective Theories

Phase space

Efficiency is 17% \Rightarrow BR $\geq 5.2 \cdot 10^{-15}$ at 90 % CL

Dipole operator $em_{\mu}\overline{\mu}\overline{\mu}\sigma^{\mu\nu}e_{L}F_{\mu\nu}$

Efficiency is 11% \Rightarrow BR $\ge 8.5 \cdot 10^{-15}$ at 90 % CL

Vector 4-fermion operator $(\overline{\mu_R}\gamma^{\mu}e_R)(\overline{e_L}\gamma^{\mu}e_L)$

 $\label{eq:efficiency} \mbox{ Efficiency is } 19\,\% \quad \Rightarrow \quad BR \geq 4.6 \cdot 10^{-15} \mbox{ at } 90\,\% \mbox{ CL}$

Dark Photon Searches with Mu3e

Dark Photon A'

- Vector portal: A' as messenger to a dark sector
- Interaction with SM particles via kinetic mixing with the photon $\mathcal{L}_{A'} = -\frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'} A'_{\mu} A'^{\mu}$
- A' with $m_{\rm A'} < m_{\mu}$ can be emitted in muon decays

Dark Photon Searches with Mu3e

Dark photons in muon decays

- $\mu \rightarrow e\nu\nu A'$ 'stable' A' or decay to dark particles
- $\mu \rightarrow e\nu\nu(A' \rightarrow ee)$ prompt decay of A' to e⁺e⁻
- $\mu \rightarrow e\nu\nu A'$ followed by $A' \rightarrow ee$ long-lived A'

Invisible Dark Photons: $\mu \rightarrow e\nu\nu A'$

- Only e^+ can be detected
- \Rightarrow Deviation in the $p_{\rm e}$ spectrum of SM μ decays
 - Can be easily interpreted as detector misalignment
 - Single-e⁺ events rejected in filter farm

Invisible Dark Photons: $\mu \rightarrow e\nu\nu A'$

- Only e⁺ can be detected
- \Rightarrow Deviation in the p_e spectrum of SM μ decays
 - Can be easily interpreted as detector misalignment
 - Single-e⁺ events rejected in filter farm

Misalignment study by U. Hartenstein

μ

Misalignment vertex layers shifted in z

BSM Physics with Mu3e

- Observe three electrons from a common vertex
- \Rightarrow Same dataset as in μ \rightarrow eee searches
 - Search for resonance in m_{ee}
 - Main background from $\mu \to eee\nu\nu$ and combinations of Bhabha scattering events with Michel decays

Promptly Decaying Dark Photons: $\mu \rightarrow e\nu\nu(A' \rightarrow ee)$

Signal

sharp peak in m_{ee}

Background

combinatorial BG contributes a factor ~800 less

Two possible e^+e^- combinations

Both e⁺e⁻ pairs Lower m_{ee} pair Higher m_{ee} pair for $m_{ee} < 45 \text{ MeV}$ for $m_{ee} \ge 45 \text{ MeV}$

Sensitivity in phase I assuming 2.6 · 10¹⁵ muon decays

Investigate currently uncovered parameter space

$$\mathsf{BR}(\mathsf{A}' \to \mathsf{ee}) = 1)$$

Phase II: $5.5 \cdot 10^{16} \ \mu$ decays at $2 \cdot 10^9 \ \mu/s$, improvements to the detector not considered

A. Perrevoort (NIKHEF)

BSM Physics with Mu3e

Longlived A': $\mu \rightarrow e \nu \nu A'$ with subsequent A' \rightarrow ee

- Search for e^+e^- pairs from displaced vertices + resonance
- Background from Bhabha scattering and photon conversion
- Decay lengths of several cm can be studied $c\tau = 0.8 \,\mathrm{mm} \frac{10^{-8}}{\epsilon^2} \frac{10 \,\mathrm{MeV}}{m_{\mathrm{A'}}}$ [Echenard et al., JHEP 01 (2015), 113]
- \Rightarrow Extend reach to smaller ϵ^2
 - Needs modifications of reconstruction and event filtering
 - Currently under study

LFV Two Body Decays: $\mu \rightarrow e X$

- Motivation: Familon (Wilczek, PRL 49 (1982) 1549)
 Spontaneous breaking of flavour symmetry
- \rightarrow (Pseudo-)Goldstone boson emitted in flavour-changing decays
- $\mu^+ \rightarrow e^+ X^0$

Neutral, light boson X not observed Monoenergetic positron

• Background:

$$\begin{array}{l} \mu^{+} \rightarrow e^{+} \overline{\nu}_{\mu} \nu_{e}, \ \mu^{+} \rightarrow e^{+} \gamma \, \overline{\nu}_{\mu} \nu_{e}, \\ \mu^{+} \rightarrow e^{+} e^{-} e^{+} \overline{\nu}_{\mu} \nu_{e}, \ Bhabha \ scattering, \\ photon \ conversion, \ \ldots \end{array}$$

Jodidio et al. at TRIUMF (Phys.Rev. D34, 1986)

- $1.8 \cdot 10^7$ highly polarized muons
- Search for massless familon expected to be isotropic
- Look for excess in end-point of Michel spectrum at $\cos \theta = -1$
- BR < $2.6\cdot10^{-6}$ at $90\,\%$ CL

Michel spectrum, $\theta = \angle (\vec{P}_{\mu}, \vec{p}_{e})$

Previous Experiments Searching for $\mu \rightarrow e X$

TWIST at TRIUMF

(Bayes et al. Phys.Rev. D91, 2014)

- $5.8 \cdot 10^8 \ \mu$ decays analyzed from highly polarized μ beam
- Search for anisotropic $\mu \rightarrow e X$ decays $\frac{\partial \Gamma}{\partial \cos \theta} \propto 1 A P_{\mu} \cos \theta$
- Massive X (on average): $BR_{A=0} < 9 \cdot 10^{-6}$ at 90 %CL $BR_{A=+1} < 10 \cdot 10^{-6}$ at 90 %CL $BR_{A=-1} < 6 \cdot 10^{-6}$ at 90 %CL

- High muon rate
 ⇒ Cannot store all single-track events
- But: online reconstruction of all tracks as 'short' tracks (i.e. no reconstruction of recurler)
- $\rightarrow K eep$ histogram of momenta for $\mu \rightarrow e\,X$ searches
 - No acceptance for $p_{\rm T} < 10 \, {\rm MeV}$
 - Calibration with Michel edge, use of Mott and Bhabha scattering under investigation
- → $25 \text{ MeV} \le m_X \le 95 \text{ MeV}$ can be investigated

Data selection

- χ^2 of track fit
- z of track propagated to target region
- Inclination angle λ_{01}

Background

Signal $m_X = 60 \text{ MeV}$

A. Perrevoort (NIKHEF)

BSM Physics with Mu3e

Anisotropic $\mu \rightarrow eX$ decays: $\frac{d\Gamma}{d\cos\theta} \propto 1 + hP\cos\theta$

$$h=0, m_X = 60 MeV$$

$$h = +1$$
, $m_X = 60 \, MeV$

BSM Physics with Mu3e

Background

 $h=-1, m_X = 60 MeV$

Flavour and DM 2018 30 / 33

A. Perrevoort (NIKHEF)

BSM Physics with Mu3e

LFV Two Body Decays: $\mu \rightarrow eX$

Further channels involving familons

- $\mu \rightarrow e X, X \rightarrow ee:$ it's a $\mu \rightarrow eee$ search
- µ → eeeee: suffers from low acceptance at low p_T can run at lower B field

Summary

- μ \rightarrow eee in effective theories
 - · Operators show characteristic decay distributions
 - Sensitivity of some 10⁻¹⁵ in phase I
- Dark photons in μ decays
 - Search for $m_{\rm ee}$ resonances
 - Investigate currently uncovered parameter space
- Lepton flavour violating two body decays $\mu \to e X$
 - Bump search on e⁺ momentum spectrum from online reconstruction
 - More than 2 orders of magnitude more sensitive than previous searches

μ \rightarrow eee in Effective Theories

Vector 4-fermion operator $(\overline{\mu_R}\gamma^{\mu}e_R)(\overline{e_R}\gamma^{\mu}e_R)$ Scalar 4-fermion operator $(\overline{\mu_R}e_L)(\overline{e_R}e_L)$

Efficiency is 19% \Rightarrow BR $\ge 4.6 \cdot 10^{-15}$ at 90% CL

Promptly Decaying Dark Photons: $\mu \rightarrow e\nu\nu(A' \rightarrow ee)$

Two possible e⁺e⁻ combinations (background)

Both e^+e^- pairs

Lower $m_{\rm ee}$ pair for $m_{\rm ee}$ < 45 MeV Higher m_{ee} pair for $m_{ee} \ge 45 \text{ MeV}$

Promptly Decaying Dark Photons: $\mu \rightarrow e\nu\nu(A' \rightarrow ee)$

Acceptance low for low p_{T} electrons, i. e. at low and high m_{ee}

Promptly Decaying Dark Photons: $\mu \rightarrow e\nu\nu(A' \rightarrow ee)$

Comparison with external study

Phase I: $1 \cdot 10^{15}$ muons

Echenard et al., JHEP 01 (2015), 113 Mu3e simulation

Promptly Decaying Dark Photons: $\mu \rightarrow e\nu\nu(A' \rightarrow ee)$

Comparison with external study

Phase II: $5.5 \cdot 10^{16}$ muons

Echenard et al., JHEP 01 (2015), 113 Mu3e simulation

Promptly Decaying Dark Photons: $\mu \rightarrow e\nu\nu(A' \rightarrow ee)$

Comparison with external study

Echenard et al., JHEP 01 (2015), 113 Mu3e simulation

Promptly Decaying Dark Photons: $\mu \rightarrow e\nu\nu(A' \rightarrow ee)$

Comparison with external study

adapted from Echenard et al., JHEP 01 (2015), 113

A. Perrevoort (NIKHEF)

BSM Physics with Mu3e

Short Tracks: 4 Hits

Short Tracks

Long Tracks: 6 Hits

Long Tracks: 8 Hits

Long Tracks

Searching for $\mu \rightarrow$ eX with Mu3e

Background

Signal $m_X = 60 \text{ MeV}$

Searching for $\mu \rightarrow eX$ with Mu3e

A. Perrevoort (NIKHEF)

BSM Physics with Mu3e

Upgrades to Mu3e

Potential Mu3eGamma upgrade

- Search for $\mu \to e \gamma$
- Additional photon converter and tracking detectors
- Increase B field: from 1 T to 2 T
- Can also investigate $\mu \to e \, X \, \gamma$ and dark photons from displaced vertices

