Track Based Alignment of the Mu3e Detector

Ulrich Hartenstein

for the Mu3e Collaboration

DPG-Früjahrstagung 03.03.16

JGU

U. Hartenstein (Mu3e Collaboration)

Alignment of the Mu3e Detector

2 The Detector

3 Misalignment Studies

4 Alignment Strategy

2 The Detector

3 Misalignment Studies

4 Alignment Strategy

The Mu3e Experiment

Goal

 $\begin{array}{c} & \text{Observe} \\ \mu^+ \to e^+e^-e^+ \text{ if } \mathcal{BR} > 10^{-16} \\ & \text{ or } \\ \text{ exclude a } \mathcal{BR} \text{ of } > 10^{-16} \text{ with } \text{CL}{=}90\% \end{array}$

Motivation

- in SM suppressed by $\mathcal{BR} < 10^{-54}$ • new physics?!
- current status (SINDRUM 1988): $\mathcal{BR} < 10^{-12}$

2 The Detector

3 Misalignment Studies

4 Alignment Strategy

- HV-MAPS
- pixel size = $80 \mu m$
- mount to 2x2cm²sensors
- thinned to $50 \mu m$
- Kapton as support structure

impossible to have sufficient alignment after construction!

2 The Detector

3 Misalignment Studies

Misalignment

xy-view of the silicon sensors

• perfect alignment

Misalignment

xy-view of the silicon sensors

• perfect alignment

• misaligned sensors

Misalignment Studies

- what does that mean?
 - \rightarrow need for alignment algorithm
- for track based alignment tracks are needed!
 - \rightarrow despite of misalignment reconstruction possible?
- how well aligned to be able to align?

Misalignment Studies

Produce Misalignment in a Simulated Detector

Alignment of the Mu3e Detector

Misalignment Studies

Produce Misalignment in a Simulated Detector

Momentum Reconstruction Efficiency

For Misalignment of Individual Sensors

- normalised to the efficiency of a perfectly aligned detector
- efficiency plateau

Momentum Reconstruction Resolution

For Misalignment of Individual Sensors

- momentum resolution from RMS of $p_{rec} p_{MC}$
- for random sensor shifts & rotations in MeV/c

The Mu3e Experiment

2 The Detector

3 Misalignment Studies

4 Alignment Strategy

Used Software

- after construction:
 - $\sigma_{\textit{position}} \leq 80 \mu m$
 - $\sigma_{\textit{orientation}} \leq 0.3^{\circ}$
 - track based alignment

Used Software

- after construction:
 - $\sigma_{\textit{position}} \leq 80 \mu m$
 - $\sigma_{\textit{orientation}} \leq 0.3^{\circ}$
 - track based alignment
- Mu3e software package
- General Broken Lines (V. Blobel, C. Kleinwort, arXiv:1201.4320v1)
- Millepede-II (V. Blobel, C. Kleinwort, arXiv:1103.3909v1)

General Broken Lines Fit

An Advanced Track Fitting Method

- $\bullet\,$ multiple scattering & energy loss $\rightarrow\,$ more advanced track models
- track refit (seeding needed!)
 - \rightarrow complete covariance matrix of all parameters
 - \rightarrow track based alignment with Millepede-II
- computing time of O(n)
 by exploiting sparsity of matrix (n = number of measurements)

V. Blobel, C. Kleinwort, arXiv:1201.4320v1

Millepede-II

Least Squares Fits with a Large Number of Parameters

- fit track & alignment parameters simultaneously
 → very large minimisation problem!
- solve irrespectively of track parameters
 → reduced to a n × n matrix equation
 (n =number of alignment parameters)
- reasonable computing time even for up to 100,000 alignment parameters

V. Blobel, C. Kleinwort, arXiv:1103.3909v1

Current Status & Outlook

- misalignment Studies \checkmark
- basic software \checkmark
- improvements & bug fixing
- use telescope to practice use of MP-II (March '16)
- blinded tests of alignment software

Alignment of the Mu3e Detector

Misalignment Studies - Momentum Resolution Sigma

• sigma of gaussian fit to the core of the momentum resolution distribution (single sensors) in MeV/c

Misalignment Studies - Momentum Reconstruction Efficiency (4-hit segments)

U. Hartenstein (Mu3e Collaboration)

Alignment of the Mu3e Detector

Momentum Reconstruction Resolution

For Torsion of the Whole Detector

- torsion of the whole detector
- $\bullet\,$ maximum rotation angle of each detector end (total: $4^\circ)$
- fairly insensitive to torsion

U. Hartenstein (Mu3e Collaboration)

Alignment of the Mu3e Detector

Momentum Reconstruction Efficiency

For Misalignment of Whole Detector Layers

Momentum Reconstruction Resolution

For Misalignment of Whole Detector Layers

Misalignment Studies - Momentum Resolution RMS (4-hit segments)

U. Hartenstein (Mu3e Collaboration)

Alignment of the Mu3e Detector

Momentum Reconstruction Efficiency

For Individual Sensors

Momentum Resolution

For Individual Sensors

The Detector

Baseline Design

- barrel detector
 - two double layers of silicon sensors
 - scintillating fibre tracker & scintillating tiles (timing)

The Detector

Baseline Design

barrel detector

- two double layers of silicon sensors
- scintillating fibre tracker & scintillating tiles (timing)

- hollow double cone target
- use re-curlers
 - allow precise momentum measurements

The Target

The Phases of the Mu3e Detector

