A HV-MAPS Pixel Tracker for the Mu3e Experiment

Heiko Augustin

Physikalisches Institut Heidelberg

DPG Spring Meeting
T72.1
02. March 2016
Mu3e
The Physics Goal

- $\mu^+ \rightarrow e^+e^-e^+$ suppressed to a BR below 10^{-54} in the Standard Model
- Any observed signal is a sign for new physics
- Current limit BR < 10^{-12} (SINDRUM)
- Aiming for sensitivity of 1 in 10^{16} decays

SINDRUM: "Search for the decay muto3e" Nucl. Phys.,B299 1, 1988
Mu3e
The Physics Goal

- $\mu^+ \to e^+ e^- e^+$ suppressed to a BR below 10^{-54} in the Standard Model
- Any observed signal is a sign for new physics
- Current limit BR $< 10^{-12}$ (SINDRUM)
- Aiming for sensitivity of 1 in 10^{16} decays

SINDRUM: "Search for the decay muto3e" Nucl. Phys., B299 1, 1988
Mu3e

The Physics Goal

- $\mu^+ \to e^+e^-e^+$ suppressed to a BR below 10^{-54} in the Standard Model
- Any observed signal is a sign for new physics
- Current limit BR $< 10^{-12}$ (SINDRUM)
- Aiming for sensitivity of 1 in 10^{16} decays

SINDRUM: "Search for the decay muto3e" Nucl. Phys., B299 1, 1988
The Signal Decay

- Muons decay at rest: $\sum \vec{p} = 0$
- Common vertex and coincident in time
- Maximal momentum 53 MeV/c
- Reconstruct invariant mass from charged particle tracks ($E_{tot} = m_\mu$)
The Background

Accidental & Combinatorial

- 10^9 decays per second
- Gives rise to accidental & combinatorial background
- Good time and vertex resolution needed
The Background
Accidental & Combinatorial

- 10^9 decays per second
- Gives rise to accidental & combinatorial background
- Good time and vertex resolution needed
The Background

Irreducible background from radiative decays with internal conversion:

\[\mu^+ \rightarrow e^+ e^- e^+ \bar{\nu}_\mu \nu_e \]

- Good momentum resolution needed to suppress SM background
- Momentum resolution is dominated by multiple scattering \(\propto \sqrt{x/p} \)

The Detector

1T magnetic field

- Recurl pixel layers
- Scintillator tiles
- Inner pixel layers
- Target
- Scintillating fibres
- Outer pixel layers
- μ Beam
- Target
- Inner pixel layers
- Recurl pixel layers
- Scintillator tiles
- μ Beam

02/03/16
HV-MAPS
Heiko Augustin
The Requirements for the Silicon Pixel Tracker

- Good vertex resolution
- Good time resolution & low dead time → fast signal generation & shaping
- Good momentum resolution → low material budget
The Requirements for the Silicon Pixel Tracker

Pixel Sensor Requirements

<table>
<thead>
<tr>
<th>Pixel Size</th>
<th>Time Resolution</th>
<th>Material Budget</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$80 \times 80 \mu m^2$</td>
<td>< 20 ns</td>
<td>$< 1%_0 X_0/layer$</td>
<td>$> 99%$</td>
</tr>
</tbody>
</table>

- Good vertex resolution
- Good time resolution & low dead time
 - fast signal generation & shaping
- Good momentum resolution \rightarrow low material budget
The Pixel Tracker

- Readout & Powering via Flexprints: T42.7
- Cooling in Helium atmosphere: T75.2
The Pixel Tracker

- Readout & Powering via Flexprints: T42.7
- Cooling in Helium atmosphere: T75.2
The Pixel Tracker

Readout

- 1056 Pixel Sensors
 - up to 36 1.25 Gbit/s links
- 34 FPGAs
- Switching Boards
 - 1 6 Gbit/s link each
- 12 PCs
- Mass Storage
 - Gbit Ethernet
- Data Collection Server
- Front-end (inside magnet)

- Untriggered readout
- 1 Tbit/s raw data rate
- GPU based online reconstruction
- Sessions: T42.5, T42.6, T22.5, T22.4, T98.1, T98.5
High Voltage Monolithic Active Pixel Sensors

- Deep n-well in p-doped substrate
- Depleted area is the active detector volume $\approx 15 \, \mu m$
- Fast charge collection via drift
- Sensor can be thinned to $< 50 \, \mu m$

I. Peric, P. Fischer et al., NIM A 582 (2007) 87
The MuPix7 Prototype

- Commercial 180 nm HV-CMOS process
- Thinned to 50 µm
The MuPix7 Prototype
The MuPix7 Prototype

Pixel
- Sensor
- CSA
- Source follower
- Test-pulse injection
- Amplification
- Integrate charge

Periphery
- 2nd amplifier
- Comparator
- AC coupling via CR filter
- Line driver
- Per pixel threshold adjustment

State Machine
- Baseline
- Comparator
- Readout state machine
- 8b/10b encoder
- VCO & PLL
- Serializer
- LVDS
- Digital output

Acronyms
- DAC: Digital-to-Analog Converter
- PLL: Phase-Locked Loop
- LVDS: Low-Voltage Differential Signaling
- AC coupling: Alternating Current coupling

Date
- 02/03/16

Authors
- HV-MAPS
- Heiko Augustin
The Pixel

- 3.2 × 3.2 mm² active area
- 32 × 40 pixels
- 3 × 3 diode structure
- In-pixel amplifier
The Pixel

- **In-pixel amplifier**
- **Point-to-point connection to periphery**
The Periphery

- Additional amplification stage
- Signal digitisation
- 8-bit time stamps
- Zero-suppressed readout

7 µm
51 µm
The Periphery

- Individual pixel tuning
- Characterise analogue behaviour

T72.2 & 3
The Analogue Behaviour

- Test of general functionality
- HV-dependence
- Analogue performance
- Pulse shape reconstruction
- SNR determination

More Details: T72.2, T72.3
The Analogue Behaviour

- Test of general functionality
- HV-dependence
- Analogue performance
- Pulse shape reconstruction
- SNR determination

More Details: T72.2, T72.3
The MuPix State Machine
The MuPix State Machine

- On-chip readout state machine
- VCO & PLL
- LVDS Gbit data link
Voltage Controlled Oscillator & Phase Locked Loop

- Stable working point
- Chip as line driver
- Jitter <100 ps (→ T72.2)
- 1.25 Gbit/s 8b10b encoded data
- Up to 30 MHits/s possible
Power Consumption

- Upper limit of 400 mW cm$^{-2}$
- Temperature gradient of 50 K (\rightarrow T75.7)
- Investigation of temperature dependence (\rightarrow T72.2)
Testbeam Measurements
Time Resolution

Time resolution measured to <11ns

Time walk observed for pixel analogue behaviour
Time Resolution

MuPix7 Pulse

Threshold

small
medium
large
Energy-deposition

MuPix7 Pulse

Threshold

input pulse

Comparator Response

Latency

ToT
Time Resolution

- Sandwich scintillator setup
- Time resolution measured to <11 ns

\[\sigma < 11 \text{ ns} \]
Time Resolution

- Sandwich scintillator setup
- Time resolution measured to <11 ns
- Time walk observed for pixel analogue behaviour
The MuPix Telescope (T99.5)

- 4 layers MuPix7
- Use one as DUT
- Time sorted data (T22.4)
- Resolution <30 μm
- Position resolved analysis
Efficiency Measurements

- Use telescope setup
- 220 MeV mixed pion beam provided by PSI
Efficiencies above 99 % observed
Tuning results in sharp noise edge
Power consumption: \(\approx 300 \text{ mW cm}^{-2} \)
Crosstalk

Pixel Matrix

Digital Cells

Signal lines
Crosstalk

![Graph showing crosstalk probability vs row address](image)
Crosstalk

![Graph showing crosstalk probability against row address. The x-axis represents row address from 0 to 35, while the y-axis shows crosstalk probability on a logarithmic scale from 10^{-4} to 10^{-2}. The graph indicates a general decrease in crosstalk probability as the row address increases.]
Crosstalk observed
Matches signal routing
MuPix8 Prototype

- Submission planned for June 2016
- First big chip $2.3 \times 1.3 \text{ cm}^2$
- Pixel size $80 \times 80 \text{ µm}^2$
- Higher resistivity substrate
- First module prototypes
Summary

- Reliable characterisation setup & frame work
- Very well performing chip technology
- First HV-MAPS prototype with integrated readout
- Many design goals already satisfied
Acknowledgments

The efficiency measurements for several power settings have been performed at the Test beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

We would like to thank the PSI for providing high rate test beams under excellent conditions.

We owe our SPS test beam time to the SPS team and our LHCb colleagues, especially Heinrich, Kazu and Martin.

We thank the Institut für Kernphysik at the JGU Mainz for giving us the opportunity to take data at MAMI.
Mu3e Talks

- Front-End Board: T22.4
- Switching Board: T22.5
- GPU-Online Reconstruction: T42.5
- GPU-Telescope Reconstruction: T42.6
- Flexprints: T42.7
- MuPix T-Dependence: T72.2
- MuPix Tuning: T72.3
- Mechanic & Cooling: T75.7
- Track reconstruction: T98.1
- Detector alignment: T98.5
- MuPix7 Telescope: T99.5