Charakterisierung von HV-MAPS Für das MU3E-Experiment

Ann-Kathrin Perrevoort

Physikalisches Institut, Heidelberg

28. Februar 2012

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Übersicht

- Das MU3E-Experiment
 - $\mu \rightarrow$ eee
 - Detektor-Konzept
- HV-MAPS
- Messungen
 - Rauschen
 - Energiekalibrierung
 - Pulsform
- Zusammenfassung & Ausblick

MU3E

Experiment

Lepton-Flavour verletzender Zerfall: $\mu^+ \rightarrow e^+e^-e^+$

Neutrino-Mixing: BR $< 10^{-50}$

SINDRUM (1988) MU3E $\begin{array}{l} \text{Beobachtung von } \mu \rightarrow \text{eee} \\ \Rightarrow \text{Neue Physik} \end{array}$

$$\begin{array}{l} {\sf BR} < 10^{-12} \, \left(90\% \, {\sf CL}\right) \\ {\sf BR} < 10^{-16} \, \left(90\% \, {\sf CL}\right) \end{array}$$

MU3E Herausforderungen

- μ \rightarrow eeevv hat gleiche Signatur wie μ \rightarrow eee
- Hohe Spurdichte ($\sim 10^8 10^9 \frac{\mu}{s}$)
 - \rightarrow kombinatorischer Untergrund

ightarrow Hohe Impuls-, Vertex- & Zeitauflösung

- Elektronen mit \sim 10 53 MeV \rightarrow Vielfachstreuung dominiert
 - $\rightarrow\,$ Möglichst wenig Material im aktiven Detektorvolumen
- $\rightarrow\,$ Spurdetektor aus dünnen Silizium-Pixel-Sensoren
- \rightarrow Schneller Timing-Detektor

Spur-Detektor

- Prismen aus Si-Pixel-Sensoren
 - Innere und äußere Doppellage + Recurl-Stationen
- Länge $\sim 150\,\mathrm{cm}$, Durchmesser $\sim 15\,\mathrm{cm}$
- Timing-Detektor
 - Fibre-Hodoskop & szintillierende Kacheln

Detektor-Design

HV-MAPS

Monolithische Aktive Pixel-Sensoren in Hochspannungs-Technologie

Funktionsweise

- Spannung in Sperrrichtung (60 V)
 → Verarmungszone
- Einfallendes Teilchen ionisiert
- Ladungssammlung durch Drift
- Integrierte Elektronik
 → digitales Signal
- Messung von ToT = Messung der Energie

Entwickelt von Ivan Perič, ZITI Mannheim

HV-MAPS

Monolithische Aktive Pixel-Sensoren in Hochspannungs-Technologie

Vorteile

- Sensor und Auslese im Pixel integriert
- Schnelle Ladungssammlung durch Drift $(\mathcal{O}(10 \text{ ns}))$
- Ausdünnen möglich (< $50 \,\mu m$)
- Geringes Rauschen (SNR > 20)
- Hohe Effizienz
- Kommerzieller Herstellungsprozess (CMOS AMS 180 nm)

Messungen

Energiekalibrierung mit Röntgen-Fluoreszenz

Messungen

Energiekalibrierung mit Röntgen-Fluoreszenz

A. Perrevoort (PI, Heidelberg)

Energiekalibrierung mit Röntgen-Fluoreszenz

A. Perrevoort (PI, Heidelberg)

Charakterisierung von HV-MAPS

- Typische Pulsform für einen CR-RC-Shaper
- Shaper zur Zeit noch zu langsam

Zusammenfassung & Ausblick

- MU3E: $\mu \rightarrow eee$
 - Verbesserung der Sensitivität um Faktor 10⁴ (gegenüber SINDRUM)
- HV-MAPS
 - Hochauflösender, dünner Si-Pixel-Sensor mit integrierter Elektronik
- Charakterisierung
 - Tests mit dem HV-MAPS-Prototypen sehr vielversprechend
 - Verbesserung des Zeitverhaltens in der kommenden Submission erwartet
 - Messungen mit gedünnten Sensoren

Vielen Dank für Ihre Aufmerksamkeit!