Helium Cooling System for the Mu3e Experiment

Constantin Tormann On behalf of the Mu3e Collaboration

22.03.2018

Mu3e Experiment

Search for the charged lepton flavour violating decay $\mu^+
ightarrow e^+ e^- e^+$

- Stopped muons decay in a solenoidal magnetic field of B=1T
- Low momentum electrons $p_e \leq 53 \,\mathrm{MeV/c}$
 - \rightarrow Need low material budget to reduce multiple scattering
 - \rightarrow Gaseous helium cooling system for pixel detector

	<u> </u>	
	Layer 1	
	Layer 2	Scintillating Fibre
	Layer 3	
	Layer 4	
H		
	36 cm	

\sim \cdot	-
	lorm ann
<u> </u>	TOrmanni

Detector modules

- Expected power consumption per chip area $P/A = 250 \text{ mW/cm}^2$ \rightarrow Test more conservative scenario with $P/A = 400 \text{ mW/cm}^2$
- $\bullet\,$ Temperatures should not exceed 70 $^{\circ}\text{C}$
- Helium enters detector with slightly above 0 $^\circ\text{C}$

Testing cooling system using Computational Fluid Dynamics Simulations. Inner and Outer double layer are presented separately.

Inner Double Layer

Temperature of silicon parts with $P/A = 400 \text{ mW/cm}^2$

Inner Double Layer

Flow directions in the inner double layers

Outer Double Layers

Thermal Expansion

Thermal linear expansion $\Delta L = \alpha L_0 \Delta T$ Layer 4: $L_0 = 36 \text{ cm}$ and $\alpha_{\text{polyimide}} = 2 \times 10^{-5} \text{ °C}^{-1}$

C. Tormann

Thermal-Mechanical Chip Prototype

First thermal-mechanical prototype of pixel sensor:

- 50 µm thick silicon layer
- 50 µm aluminium-polyimide flexprint

```
\begin{array}{l} \alpha_{\rm polyimide} \approx 8 \cdot \alpha_{\rm silicon} \\ \rightarrow {\rm Study~deformation} \end{array}
```


Experimental Concept

Initial Temperature

Experimental Concept

Increased Temperature

Chip Deformation

 $T = 30 \,^{\circ}\text{C}$

C. Tormann

22.03.2018 17 / 20

Chip Deformation

 $T = 50 \,^{\circ}\text{C}$

Deformation

Summary & Outlook

- Temperatures in the detector exceed 70 °C for conservative scenario of $P/A = 400 \text{ mW/cm}^2$.
- Uneven temperature distribution induces mechanical stress.
- \rightarrow Improve cooling system
- Building thermal-mechanical mock-up for future testing of the cooling system.
 - \rightarrow Validate simulation results
 - $\rightarrow~$ Study deformations of detector
 - $\rightarrow~$ Study vibrations induced by the helium flow

Deformation Inner Layer

C. Tormann

Cooling System for Mu3e

Tubing system

Inlet Inner Double Layer

Circuit	Duct IN	Flange	Detector	Flange	Duct OUT
Gap L1/L2	25	7	<1	9	24
Gap L3/Scifi	6	<1	3	28	-
V-Folds L3	25-50	80-90	25	10-20	25-35
Gap L3/L4	8	25	<1	11	-
V-folds L4	30-50	60-70	10-20	50-70	20

Pressures in millibar. Some flows vent into global volume.

Flow channel	He flow speed	Cross-section	Volumetric Flow
	${ m ms^{-1}}$	cm ²	$10^{-3}{ m m}^3{ m s}^{-1}$
Gap L1/L2	10	12	12
Gap SciFi/L3	5	105	53
V-folds L3	20	$0.7\times24\times2$	20
Gap L3/L4	10	60	60
V-folds L3	20	$0.7\times28\times2$	23
Total		238	168

by Thomas Mittelstaedt

C. Tormann

22.03.2018 29 / 20