Simulation studies of the technical prototype for the Mu3e Tile Detector

Hannah Klingemeyer
on behalf of the Tile Detector group
Kirchhoff Institute for Physics

DPG Spring Meeting
March 22, 2018
The decay $\mu \rightarrow eee$

- lepton flavour violating (LVF) decay

- Standard Model:
 - via neutrino oscillation
 - suppressed by more than $O(10^{-54})$
The decay $\mu \rightarrow eee$

- **lepton flavour violating (LVF) decay**
- **Standard Model:**
 - via neutrino oscillation
 - suppressed by more than $O(10^{-54})$
- observation would be sign of new physics
- current limit: $\text{BR} < 10^{-12}$ by the SINDRUM experiment
Background sources

two types of background sources:

1) **internal conversion:**

\[\mu \rightarrow eee\nu\nu \]

→ veto via reconstruction of missing neutrino energy

→ excellent momentum resolution needed
Background sources

two types of background sources:

1) **internal conversion:**

→ $\mu \rightarrow eee\nu\nu$

→ veto via reconstruction of missing neutrino energy

→ excellent momentum resolution needed
two types of background sources:

2) **accidental background:**

- muon decay + electron-positron scattering
- veto via precise vertex and **time** determination

[scheme by Frank Meier Aeschbacher]
Background sources

two types of background sources:

2) **accidental background:**

→ muon decay + electron-positron scattering

→ veto via precise vertex and **time** determination

[scheme by Frank Meier Aeschbacher]
two types of background sources:

2) **accidental background:**

 \rightarrow muon decay + electron-positron scattering

 \rightarrow veto via precise vertex and **time** determination

[scheme by Frank Meier Aeschbacher]
two types of background sources:

2) **accidental background:**

→ muon decay + electron-positron scattering

→ veto via precise vertex and **time** determination

[scheme by Frank Meier Aeschbacher]
two types of background sources:

2) \textbf{accidental background:}

\begin{itemize}
 \item muon decay + electron-positron scattering
 \item veto via precise vertex and \textbf{time} determination
\end{itemize}

[scheme by Frank Meier Aeschbacher]
Background sources

two types of background sources:

2) **accidental background:**

 → muon decay + electron-positron scattering

 → veto via precise vertex and **time** determination

[scheme by Frank Meier Aeschbacher]
The Mu3e experiment

- target sensitivity $\leq O(10^{-16})$
 - pixel detectors: tracking, vertexing
 - scintillating fibre (SciFi) Detector and Tile Detector: timing

- fixed target experiment
 - to be installed at PSI, Switzerland

$\vec{B} = 1$ T

~ 20 cm

~ 120 cm
to be installed on recurl stations (up- and downstream of target)

requirements:
- time resolution < 100 ps
- detection efficiency $\sim 100\%$
- hit rate up to 60 kHz per channel

scintillating tiles and silicon photomultipliers (SiPMs)
The Tile Detector

- to be installed on recurl stations (up- and downstream of target)

requirements:
- time resolution < 100 ps
- detection efficiency ~ 100%
- hit rate up to 60 kHz per channel

- scintillating tiles and silicon photomultipliers (SiPMs)
The Tile Detector

- to be installed on recurl stations (up- and downstream of target)

- **requirements:**
 - time resolution < 100 ps
 - detection efficiency $\sim 100\%$
 - hit rate up to 60 kHz per channel

- scintillating tiles and silicon photomultipliers (SiPMs)
to be installed on recurl stations (up- and downstream of target)

requirements:
- time resolution < 100 ps
- detection efficiency $\sim 100\%$
- hit rate up to 60 kHz per channel

scintillating tiles and silicon photomultipliers (SiPMs)
The Tile Detector

- to be installed on recurl stations (up- and downstream of target)

requirements:
- time resolution < 100 ps
- detection efficiency $\sim 100\%$
- hit rate up to 60 kHz per channel

- scintillating tiles and silicon photomultipliers (SiPMs)
The Tile Detector

- to be installed on recurl stations (up- and downstream of target)

requirements:
- time resolution < 100 ps
- detection efficiency $\sim 100\%$
- hit rate up to 60 kHz per channel

- scintillating tiles and silicon photomultipliers (SiPMs)
The Tile Detector

- to be installed on recurl stations (up- and downstream of target)

requirements:
- $\text{time resolution} < 100$ ps
- $\text{detection efficiency} \sim 100\%$
- $\text{hit rate up to} 60$ kHz per channel

- scintillating tiles and silicon photomultipliers (SiPMs)

- reduction of accidental background by factor 100
Thermal simulation - motivation

we want a **reliable thermal simulation** because:

1) Tile Detector surrounded by pixel detector
 → cooled with helium ⇒ heat gradient
 → SiPM operation? (⇒ HV?)

2) integration of services (cooling pipes and ducts, cables, ...)
 → check different geometries of Tile Detector
 → test in simulations first

→ **full detector simulation important to finalise design!**
idea:

- build simple setup in the lab
- try to replicate as close as possible in simulation
 - geometry
 - material (heat transfer, coupling between materials, ...)
 - environment

→ goal: reliable simulation
 - can be extended/modified
Thermal simulation - setup and input

- thermal simulation using 3D CAD software SolidWorks
 - "Flow Simulation" add-in to model water and air flow
 - finite element method
 - takes care of material properties, heat exchange,...

- ingredients:
 - cooling plate + pipe
 - one submodule
 - "box" of air → lab environment
Thermal simulation - setup and input

- thermal simulation using 3D CAD software SolidWorks
 - "Flow Simulation" add-in to model water and air flow
 - finite element method
 - takes care of material properties, heat exchange,...

- ingredients:
 - cooling plate + pipe
 - one submodule
 - "box" of air → lab environment
Thermal simulation - setup and input

- thermal simulation using 3D CAD software SolidWorks
 → "Flow Simulation" add-in to model water and air flow
 → finite element method
 → takes care of material properties, heat exchange, ...

- ingredients:
 → cooling plate + pipe
 → one submodule
 → "box" of air → lab environment

- input from lab measurements:
 → water temperature: 15°C
 → volume flow of water: 4.7 cm³/s
 → environment temperature: 21°C
 → different chip power consumptions:
 → ~ 2.1 W
 → ~ 1.7 W
 → ~ 0.86 W
 ⇒ measurement of chip temperature
Meshing

- optimise mesh settings
 - too coarse: results unreliable
 - too fine: computing time and resources skyrocket!
Power consumption: ~ 2.1 W
Temperature approximation

- temperature sensor: $\sim 4.5 \times 4.5 \text{ mm}^2$

- **simulation**: approximate using circle with $\varnothing = 4.5 \text{ mm}$
 - → average over area

 for $P_{\text{chip}} \approx 2.1 \text{ W}$: $T_{\text{top}}^{\text{sim}} \approx 38^\circ\text{C}$
 $T_{\text{top}}^{\text{meas}} \approx 37^\circ\text{C}$
Comparison with lab measurements

→ very good agreement between data and simulation (difference ≤ 1°C)
Comparison with lab measurements

\[\text{very good agreement between data and simulation (difference } \leq 1^\circ\text{C)} \]
Simulation of full module

in progress

bottom view of the **cooling plate** (SiPM/tile side):

\[T_{\text{min}} = 15.62^\circ C, \quad T_{\text{max}} = 15.91^\circ C \]

→ small heat gradient

Temperature (Solid) [\(^\circ C\)]

water inlet
Summary and outlook

summary:

- thermal simulation is important to finalise detector design
- simulation of simple setup ↔ direct comparison to lab measurements
 - preliminary results look promising

next steps:

- full module simulation
- test changes in geometry
 - thinner cooling plate, smaller pipes, ...
- module surrounded by helium (gradient!)
 - effect on SiPMs?
Thank you for your attention!
Appendix
Chip and PCB modelling

- ASIC in lab setup and simulation: **STiC V3**
 - predecessor of MuTRiG

- chip and package modelling
 - heat transfer defined "by hand"
 (based on data from manufacturer)

- PCB modelling
 - thermal vias implemented in STiC PCB
Power consumption: ~ 2.1 W: flow speed

![Graph showing temperature variations over time](image-url)
Power consumption: $\sim 2.1 \text{ W}$: top view
Power consumption: $\sim 2.1 \text{ W}$: flow speed
Full module