Flexprint Design Studies for the Mu3e Experiment

Jens Kröger

on behalf of the Mu3e collaboration

DPG Frühjahrstagung Münster 2017

March 28, 2017

The Mu3e Experiment - Detector Concept

- μ^+ are stopped
- decay at rest
 - ightarrow low momentum electrons $p_e \leq 53~MeV/c$
- 1 T magnetic field

The Mu3e Experiment - Detector Concept

- low momentum electrons $p_e \leq 53 \ MeV/c$
- multiple Coulomb scattering dominates momentum resolution

$$\Theta_{rms} \propto \sqrt{rac{x}{X_0}}$$

tracking in scattering dominated regime

 \rightarrow consequence: minimize material budget

Flexprints for the Mu3e Detector

Challenge: minimize material budget **Solution:** thinned pixel chips and flexprints

- dielectric layers: polyimide film (Kapton)
- electric layers: copper or aluminium

thinned wafer

flexprint prototype

Flexprints for the Mu3e Detector

• desired material budget: $x/X_0 \le 0.1\%$ per layer

x/X_0

pixel chip (50 µm)	$\sim 0.05~\%$
flexprint	$\sim 0.05~\%$
support + glue (35 μ m)	~ 0.01 %
per layer	~ 0.11 %

Flexprints for the Mu3e Detector

 desired material budget: 		x/X_0
$X/X_0 \leq 0.1\%$ per layer	pixel chip (50 µm)	$\sim 0.05~\%$
	flexprint	\sim 0.05 $\%$
	support $+$ glue (35 μ m	n) $\sim 0.01~\%$
flexprint	per layer	\sim 0.11 %
pixel sensor		
	Experiment	x/X_0 per layer
	Experiment ATLAS IBL [1]	x/X_0 per layer 1.9 %
	Experiment ATLAS IBL [1] CMS (upgrade) [2]	x/X_0 per layer 1.9 % ~1.1 %
Kapton support	Experiment ATLAS IBL [1] CMS (upgrade) [2] ALICE (upgrade) [3]	x/X ₀ per layer 1.9 % ~1.1 % 0.3 %
Kapton support	Experiment ATLAS IBL [1] CMS (upgrade) [2] ALICE (upgrade) [3] STAR [4]	x/X ₀ per layer 1.9 % ~1.1 % 0.3 % 0.4 %
Kapton support	Experiment ATLAS IBL [1] CMS (upgrade) [2] ALICE (upgrade) [3] STAR [4] BELLE II IBL [5]	x/X ₀ per layer 1.9 % ~1.1 % 0.3 % 0.4 % 0.2 %

Flexprints for the Mu3e Experiment

Aluminium	vs.	Copper
-----------	-----	--------

	conductivity	radiation length
Cu	$59.6 imes10^6\mathrm{Sm^{-1}}$	1.436 cm
ΑΙ	$36.9 imes10^6\mathrm{Sm^{-1}}$	8.897 cm

from wikipedia [6]

from wikipedia [7]

Flexprints for the Mu3e Experiment

Aluminium	vs.	Copper
-----------	-----	--------

	conductivity	radiation length
Cu	1.5 imes higher	
ΑΙ		6 imes longer

 \Rightarrow Aluminium saves us a **factor of 4** in material!

from wikipedia [6]

from wikipedia [7]

 clock, reset, configuration signals

Flexprint Prototypes - First Steps

In-house production with laser platform

First flexprint: $10 \times 1.8 \text{ cm}^2$

- $25 \,\mu m$ Kapton + $25 \,\mu m$ Al + glue
- trace width ≥ 120 µm, trace separation ≥ 120 µm
- different lengths up to 1 m

Flexprint Prototypes - First Steps

In-house production with laser platform

First flexprint: $10 \times 1.8 \text{ cm}^2$

- $25 \,\mu m$ Kapton + $25 \,\mu m$ Al + glue
- trace width $\geq 120 \,\mu\text{m}$, trace separation $\geq 120 \,\mu\text{m}$
- different lengths up to 1 m

Eye diagram at 800 Mb/s, length: 10 cm

Flexprint Prototypes - First Steps

In-house production with laser platform

First flexprint: $10 \times 1.8 \text{ cm}^2$

- $25 \,\mu m$ Kapton + $25 \,\mu m$ Al + glue
- trace width $\geq 120 \,\mu\text{m}$, trace separation $\geq 120 \,\mu\text{m}$
- different lengths up to 1 m

Problem:

structures not small enough!

Eye diagram at 800 Mb/s, length: 10 cm

First LTU Flexprint Prototype

- manufactured by LTU
- \bullet smallest structure sizes: 63 $\mu m \rightarrow$ sufficiently small
- 3 dummy chips glued on flexprint
- only mechanical test

Feasibility study (Bachelor Thesis by Lars Noehte, 2016 [8])

- 9 pixel chips over 18 cm
- min. number of signal traces
- power distribution critical

size: $1.8\times19.0\,\text{cm}^2$

\Rightarrow Next step: Design test structure with all critical characteristics

Design containing all crucial characteristics for final design

top layer

bottom layer

Time Domain Reflectometry (TDR)

- measure impedance via reflection of input pulse
- essential for fast data transmission: $Z_0 = 50 \,\Omega$, $Z_{diff} = 100 \,\Omega$

Time Domain Reflectometry (TDR)

- measure impedance via reflection of input pulse
- essential for fast data transmission: $Z_0 = 50 \,\Omega$, $Z_{diff} = 100 \,\Omega$

Time Domain Reflectometry (TDR)

Data Transmission Studies

eye diagram analysis

Eye diagram at 1.25 Gb/s

• bit error rate test \rightarrow transmit pseudo random bit stream

$$BER = rac{\# ext{ error bits}}{\# ext{ transmitted bits}}$$

Bit Error Rate Test

data rate [Gb/s]	line	BER upper limit at 95% CL
1.25 Gb/s	all	${\leq}5.5 imes10^{-13}$
2.5 Gb/s	all	${\leq}5.9 imes10^{-13}$
3.2 Gb/s	all short	\leq 4.1 $ imes$ 10 $^{-13}$
	18 cm	fail
4.0 Gb/s	all	fail

Power Planes

• manufacturer: Al thickness $\sim 14\,\mu\text{m}$

•
$$R = R_0 + \rho_{AI} \frac{1}{t} \frac{l}{w}$$

• thickness from resistance measurement:

$$t=12.3\pm0.3\,\mu\text{m}$$

 no significant deviations between flexprints

Jens Kröger (Uni Heidelberg)

Flexprint Prototypes - Summary and Next Steps

Summary

- Mu3e: search for cLFV
- ultra-low material detector
- flexprints for readout and power supply of pixel tracker
- very promissing
 - bit error rate tests and
 - opwer tests

Next Steps

- improve trace parameters
- operate one pixel chip on a flexprint
- operate **multiple** pixel chips on a flexprint

- [1] ATL-INDET-PROC-2015-001
- [2] CERN-LHCC-2012-016, CMS-TDR-11
- [3] arXiv:1211.4494v1
- [4] talk by G. Contin at PIXEL 2016
- [5] talk by C. Koffmane at PIXEL 2016
- [6] https://upload.wikimedia.org/wikipedia/commons/f/f0/ NatCopper.jpg
- [7] https://upload.wikimedia.org/wikipedia/commons/5/5d/ Aluminium-4.jpg
- [8] L. Noehte, Flexprint design and characterization for the Mu3e experiment, Bachelor thesis, Heidelberg University, 2016, https://www.psi.ch/mu3e/ThesesEN/BachelorNoehte.pdf

Backup

The Mu3e Experiment - Motivation

- ullet search for lepton-flavour violating decay $\mu^+ \to e^+ e^- e^+$
- sensitivity: 1 in 10¹⁶ decays
- ν SM branching ratio $\leq 10^{-54}$
- signal would be clear sign for BSM physics

The Mu3e Experiment - Signal and Backgrounds

\rightarrow Detector Requirements:

- very high vertex resolution
- excellent momentum reconstruction

The Mu3e Experiment - Signal and Background Topologies

combinatorial background internal conversion background

- commom vertex
- coincident (in time)
- $\Sigma \vec{p} = 0$
- $\Sigma E = m_{\mu}$

- no commom vertex
- not coincident (in time)
- $\Sigma \vec{p} = 0$ • $\Sigma E = m_{\mu}$

commom vertex

e

- coincident (in time)
- $\Sigma \vec{p} \neq 0$
- $\Sigma E \neq m_{\mu}$

History of LVF Experiments

Updated from W.J. Marciano et al., Ann.Rev.Nucl.Part.Sci. 58, 315 (2008)

E_{miss} Resolution Requirement for Mu3e

R.M. Djilkibaev and R.V. Konoplich, Rphzs.Rev., D79 073004, 2009