

Stefan Ritt, Paul Scherrer Institute, Switzerland

FUTURE OF cLFV USING MUONS - a technological approach

Predicting the Future

11th Real Time Conference, Santa Fe, NM, 1999 What will dominate the future of DAQ?

- PCs for Data Acquisition
- Linux as Operating System
- Java for DAQ programming

 \rightarrow 66% success rate

interest. I hope everyone enjoyed the panel presentations and discussions by Bob Downing, Sandro Vascotto and Stefan Ritt, dynamically moderated by Wolfgang von Rueden.

Agenda

- Introduction to cLFV experiments
- Technical requirements
- Current and future solutions
 - Muon beams
 - Calorimetry
 - Tracking
 - Timing
 - (Crate standards)
 - Data visualization

Why is cLFV so interesting?

- New physics can be explored through virtual loops in low energy high precision experiments, reach O(100 TeV)
- While cLFV is forbidden in SM, it is possible on most SM extensions

Experimental limit: BR($\mu^+ \rightarrow e^+\gamma$) < 5.7 x 10⁻¹³

MEG collaboration, PRL 110 (2013) 201801

cLFV with muons

History of cLFV experiments

Requirements for cLFV experiments

- Muon beam
 - -10^{-17} sensitivity requires >10¹⁷ muons per year
 - stopping target (low mass)
 - pulsed vs. DC beam
- Gamma detector $(\mu^+ \rightarrow e^+ \gamma)$
 - Good efficiency (solid angle)
 - Good resolutions in energy, position and time
- Positron/Electron detector
 - Good position resolution for momentum, tracking, vertexing
 - Good time resolution

20 - 100 MeV

Muon Beams

Pulsed vs. DC muon beam

Coincidence experiments

 $\begin{array}{l} \mu^{\!\!\!+} \to \, {\boldsymbol e}^{\!\!\!+} \, \gamma \\ \mu^{\!\!\!\!+} \to \, {\boldsymbol e}^{\!\!\!+} \, {\boldsymbol e}^{\!\!\!-} \, {\boldsymbol e}^{\!\!\!\!+} \end{array}$

- Limited by accidental background
- $R_{bck} \propto R\mu^2$
- DC muon beam is best

μ – e conversion

- Limited by pions in beam
- Contamination $< 10^{-17}$
- Only possible with pulsed beam

Current and planned muon beams

Laboratory	Beam line	DC rate [Hz]	Pulsed rate [Hz]
PSI (CH) 0.59 GeV / 1.3 MW	LEMS	4·10 ⁸ (μ ⁺)	runn:
	πE5	1.6 · 10 ⁸ (μ ⁺)	Nanng
	HiMB	1·10 ¹⁰ (μ ⁺) (>2018)	,60
J-PARC (JP)	MUSE D-line		3·10 ⁷ (μ ⁺)
3 GeV / 210 kW (planned 1 MW)	MUSE U-line		6.4 · 10 ⁷ (μ ⁺)
8 GeV / 56 kW	COMET		1·10 ¹¹ (μ ⁻) (2020)
8 GeV / 300 kW	PRISM/PRIME		10 ¹¹ -10 ¹² (μ ⁻) (>2020)
FNAL (USA)			
8 GeV / 25 kW	Mu2e		5 · 10 ¹⁰ (μ ⁻) (2020)
0.8 GeV / 100 kW	PIP-II		2·10 ¹² (μ ⁻) (> 2022)
TRIUMF (CA) 0.5 GeV / 75 kW	M20	2·10 ⁶ (μ ⁺)	
RAL-ISIS (UK) 0.5 GeV / 75 kW	RIKEN-RAL		1.5 · 10 ⁶ (μ ⁺)
KEK (JP) 0.5 GeV / 2.5 kW	Dai Omega		4·10 ⁵ (μ ⁺)
RCNP Osaka (JP) 0.4 GeV / 400 W	MUSIC		10 ⁴ − 10 ⁵ (μ ⁺ /μ ⁻) (2016)
DUBNA (RU) 0.66 GeV / 1.6 kW	Phasatron		3·10 ⁴ (μ ⁺)

Beam requirements

Experiment	Optimal rate	Possible rate
MEG I	3.107	1·10 ⁸
MEG II	7·10 ⁷	1·10 ⁸
Mu3e Phase I	1·10 ⁸	1·10 ⁸
Mu3e Phase II	> 10 ⁹	1·10 ¹⁰ (>2018)
Mu2e	5·10 ¹⁰	5 · 10 ¹⁰ (2020)
COMET Phase I	1.3·10 ⁹	1.3 · 10 ⁹ (2018/19)
COMET Phase II	1·10 ¹²	1·10 ¹¹ (>2020)

Long term future:

- More muons
- More muons
- More muons

PSI Beam Lines

HiMB @ SINQ target

- Muons transported opposite of proton beam in a solenoidal channel
- Capture large solid angle
 of full proton beam
- First estimates > $10^{10} \mu$ / s
- Problems:
 - SINQ moderator tank imposes severe constraints
 - Source collection too low without significant SINQ redesign (impractical)

 \rightarrow given up

Himb @ EH

HiMB @ EH details

- Feasibility study started 2014
- Preliminary conclusions:
 - A new 20 mm rotated graphite target seems optimal for muon production
 - A capture solenoid (0.5 T) at d = 250 mm can catch $1.5 \cdot 10^{10} \mu$ / s
 - A solenoidal beam line can transport $\sim 1 \cdot 10^{10} \,\mu$ / s
 - minor impact on other PSI beam lines
- Final conclusion by the end of this year, design will probably follow

Calorimetry

Requirements for photon detector

Calorimetry MEG I

Calorimeter waveforms

DRS4 Chip: 5 GSPS / 11.5 bits

900 channels

Calorimetry MEG II

New Hamamatsu VUV SiPM

Normal MPPC (3×3 mm²)

Resolution	MEG I	MEG II
x (mm)	5	2.4
y (mm)	5	2.2
z (mm)	6	3.1
E_{γ} (z<2cm)	2.4%	1.1%
E _γ (z>2cm)	1.7%	1.0%
t _γ (ps)	67	60

Tomorrow: Calorimetry Ryu Sawada: "Noble liquid calorimetry"

5 Oct 2015

Future calorimetry

TPC

- use only primary e⁻
- use pixel amplifiers with ultra low noise (< 4e, R. Horisberger, PSI, priv.comm.)

G. Signorelli (Pisa): FOXFIRE project

Optical TPC - use light and TOF with ~ps resolution to reconstruct full shower

Tomorrow: Photodetectors Eric Oberla: "Optical TPC"

5 Oct 2015

Tracking

Requirements for charged particle detection

5 Oct 2015

Tracking with DCs and Straws

5 Oct 2015

New idea: "Wire-TOF"

- Charge division along a wire (DC/Straw) gives ~2 cm resolution
- Measuring TOF with new electronics should be much better!

Speed⁻¹: 7.5 ps / mm Resolution: 560 µm

> Tomorrow: Tracking & Vertex Anatoly Ronzin: "Fast Timing"

Tracking with HV-MAPS

- High Voltage Monolithic Active Pixel Sensors (HV-MAPS)
- Reverse biased ~60 V
 - fast charge collection < 1ns
 - can be thinned to ~50 μ m !
 - standard HV CMOS technology: ~1000 \$ / 8" wafer (3.2 \$ / cm² vs. 100 \$ / cm² for hybrid pixels)
- Prototypes successfully tested for Mu3e experiment
 - 80 μm x 80 μm pixels
 - > 99% efficiency
 - timing resolution <17 ns
 - hit rate capability > 1 MHz / cm^2
 - $X/X_0 = 0.1\%$ including frame, flex print, ...
- → attractive replacement for gas detectors! (minus cooling problem)

by Ivan Perić

I. Perić, A novel monolithic pixelated particle detector implemented in highvoltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

50 μ m thin silicon wafer

Can't we make that simpler?

- Gas detectors for low mass and good resolution
- Scintillation detectors for good timing and triggering

HVMAPS + TDC

Current Mu3e MUPIX

HVMAPS+TDC

Pixel

TPC for cLFV experiments

VSiPMT (Hamamatsu)

No gas gain (ageing!)

- VSiPMT can directly detect e⁻ @ 3 keV (less with reduced SiO₂ layer)
- QE = $100\% \cdot \text{fill factor}$, 100 ps timing

G. Barbarino et al, arXiv:1407.2805

Timing

Timing requirements for Mu3e

 $2 \times 10^9 \mu$ stops/s, 50 ns frame rate

100 μ decays

Timing requirements for Mu3e

 $2 \times 10^9 \mu$ stops/s, 50 ns frame rate

Additional time detector (<1ns): 2μ decays

CPAD2015, Arlington, TX

5 Oct 2015

Timing requirements for MEG

- Limited by accidental background
- Timing can help to separate signals
 from background
- γ time from LXe calorimeter
- e⁺ time from dedicated timing counter

Resolution (ps)	MEG I	MEG II	
$\Delta \dagger_\gamma$	67	60	
Δt_e	107	35	in signal
$\Delta t_{e-\gamma}$	127	84	in signia.

COBRA Magnet Drift chamber Muon Beam Stopping Target e⁺ Timing counter

Electronics for timing

- Switched capacitor array chips give excellent timing:
 - PSEC4 (Chicago): 9 ps, DRS4 (PSI): 1.4 ps
- TDC follow up:
 - TDC130 (CERN): 2.4 ps, SAMPIC (Saclay): 6.5 ps
- Precision clock distribution possible
 - MEG I: 20 ps, MEG II: 5 ps

Timing limitation

5 Oct 2015

Timing resolution with SiPMs

MEG II timing counter

- SiPM: MPPC \$10362-33-050 (3-3 mm²)
- Scintillator: BC422 (3·3·2 mm²)

fill factor area SiPM / area Scint.

~40 ps

Image: constraint of the source of the sou

CPAD2015, Arlington, TX

Hit position error

Road to better timing

- Aim for complete coverage (k=1)
- Reduce counter size (increases channel count
)
- Integrate readout electronics into detector (avoid long cables)

Data Visualization

Experimental Data Visualization

- The traditional way
 - Dedicated programs (ROOT, Qt, TCL/TK, ...)
 - Must be compiled for different OS
 - Require certain libraries to be installed
 - No smartphone support

A new opportunity

HTML5 – CSS3 – JavaScript – JSON

Canvas Object

	html	
	<html></html>	
	<body></body>	file:///Users/rtop/index.html × +
	<h1>Canvas Demo</h1>	
		← Ohttp://test/index.html ⊽ C ≫ ≡
Y	<canvas <="" id="myCanvas" td="" width="200"><td></td></canvas>	
É	height="100" style="border:1 px solid	Canvas Demo
T	black">	
	<script></td><td></td></tr><tr><td></td><td><pre>var c = document.getElementById("myCanvas");</pre></td><td></td></tr><tr><td></td><td><pre>var ctx = c.getContext("2d");</pre></td><td></td></tr><tr><td></td><td><pre>ctx.fillStyle = "red";</pre></td><td></td></tr><tr><td>þ</td><td>ctx.fillRect(20,20,160,60);</td><td></td></tr><tr><td></td><td><pre>ctx.strokeStyle = "blue";</pre></td><td></td></tr><tr><td>Sc</td><td>ctx.moveTo(0,50);</td><td></td></tr><tr><td>></td><td>ctx.lineTo(200,50);</td><td></td></tr><tr><td>ğ</td><td>ctx.stroke();</td><td></td></tr><tr><td></td><td><pre>ctx.beginPath();</pre></td><td></td></tr><tr><td></td><td>ctx.arc(100,50,40,0,2*Math.PI);</td><td></td></tr><tr><td></td><td>ctx.stroke();</td><td></td></tr><tr><td></td><td></script>	

DRS4 Web Oscilloscope

Smartphone and Tablet

Another Display

Data Transport

5 Oct 2015

3D Canvas

Future of visualization

- Experiment data can be displayed on any browser (soon)
 - HTML5 is standardized through W3C
 - No software to install, no libraries required
 - Central updates of software
 - Only raw (binary) data needs to be transferred (as opposed to remote desktop applications)
 - Perfect for remote monitoring and control
 - Easy to learn (Scope took me one week from scratch)
- Web server can be incorporated into any web device ("Internet of Things (IoT)")

Conclusions

- Learn HTML5
- Try wire-TOF if you use gas detectors
- Invest in HV-MAPS technology
- Work on electronics-on-detector integration
- Have more exchange in technical sectors
 between cLFV experiments

Thanks to: Satoshi Mihara, Ryu Sawada, Alexey Stoykov, Peter-Raymond Kettle, Zachary Hodge, Felix Berg, Roland Horisberger, André Schöning, Nik Berger, ...

Spare Slides

Crate Standards

Bus/Crate Standards

- Current standards lack functionality A personal view from a crazy physicist or are expensive
 - ps clock distribution
 - trigger distribution
 - complicated shelf management
 - typical 1 k\$ per (empty) slot 6 HE
- For MEG II, we developed our own standard
 - stackable without dead space
 - dual star gigabit link topology
 - system-wide clock (ps jitter) and triggering
 - program all (!) FPGAs through shelf manager
 - crate high voltage for SiPMs
 - cost 125 \$ per slot 3 HE

Tomorrow: Markus Joos: Crate standards at CERN

WaveDAQ System

CPAD2015, Arlington, TX

5 Oct 2015

MEG II System

CPAD2015, Arlington, TX

5 Oct 2015