Dark Matter @ Charged lepton flavour violation experiments

Niklaus Berger Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

Dark Matter @ LHC Heidelberg, April 2018

Overview

Charged lepton flavour violation experiments:

• What do we have, what do we expect?

Beyond the standard channels:

• Exotics with Mu3e: $\mu \rightarrow e X$ and Dark Photons

Lepton flavour violation experiments

Standard Model branching fractions of 10-50ish

Only limited by number of muons and background suppression:

Experimental/technical challenge

History of cLFV experiments

(2008))

LFV Muon Decays

LFV Muon Decays: Experimental Situation

 $MEG (PSI) \\ B(\mu^+ \rightarrow e^+ \gamma) < 4.2 \cdot 10^{-13} \\ (2016)$

SINDRUM II (PSI) $B(\mu^{-}Au \rightarrow e^{-}Au) < 7 \cdot 10^{-13}$ (2006) relative to nuclear capture SINDRUM (PSI) B($\mu^+ \rightarrow e^+e^-e^+$) < 1.0 \cdot 10⁻¹² (1988)

Niklaus Berger – DM@LHC, April 2018 – Slide 6

LFV Muon Decays: Experimental signatures

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

LFV Muon Decays: Experimental signatures

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

LFV Muon Decays: Experimental signatures

Kinematics

- 2-body decay
- Monoenergetic e^+ , γ
- Back-to-back

Kinematics

- Quasi 2-body decay
- Monoenergetic e⁻
- Single particle detected

Kinematics

 $\mu^+ \rightarrow e^+ e^- e^+$

- 3-body decay
- Invariant mass constraint
- $\Sigma p_i = 0$

Searching for $\mu \rightarrow e\gamma$ with MEG

The MEG Detector

J. Adam et al. EPJ C 73, 2365 (2013)

MEG Results

- 2009-2013 data
- Blue: Signal PDF, given by detector resolution
- No signal seen
- Upper limit at 90% CL:

 $BR(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$

A. M. Baldini et al. Eur.Phys.J. C76 (2016) no.8, 434

 $\cos\Theta_{e^+\gamma}$

LXe Calorimeter

Higher resolutions and efficiency with higher granularity.

MEG II

Target Thinner target Active target option

Muon Beam More than twice intense beam

Drift chamber

Higher tracking performance with long single tracking volume **Tin**

Timing Counter

Higher time resolution with highly segmented detector

Radiative Decay Counter

Identify muon radiative-decays

Angela Papa (Mainz Seminar) Where we will be MEG II ~ 4 x 10⁻¹⁴ 500 k factor (x 1011) 375 250 125 2008 2010 2012+2013 0 MEG 2018-2021

MEGII

Searching for $\mu \rightarrow e$ conversion with

Mu2e, DeeMee, COMET, PRISM

Conversion Signal and Background

• Single 105 MeV/c electron observed

Backgrounds:

Anything that can produce a 105 MeV/c electron

- Primary proton beam
- Decay in Orbit (DIO)
- Nuclear capture (AlCap effort at PSI)
- Cosmics

Experimental layout - Mu2e

Niklaus Berger – DM@LHC, April 2018 – Slide 17

Conversion: Expected sensitivities

- J-PARC: Comet/DeeMee/Prism Fermilab: Mu2e
- Comet Phase I and DeeMee might get to ~10⁻¹⁴ as early as 2019
- Both Comet Phase II and Mu2e will start around 2020
- Should get single event sensitivities well below 10⁻¹⁶
- Prism/Prime and Mu2e with Project X/PIP-II explore paths to 10⁻¹⁸

Searching for $\mu^+ \rightarrow e^+e^-e^+$ with Mu3e

The signal

- $\mu^+ \rightarrow e^+ e^- e^+$
- Two positrons, one electron
- From same vertex
- Same time
- $\Sigma p_e = m_{\mu}$
- Maximum momentum: $\frac{1}{2} m_{\mu} = 53 \text{ MeV/c}$

Accidental Background

- Combination of positrons from ordinary muon decay with electrons from:
 - photon conversion,
 - Bhabha (electron-positron) scattering,
 - Mis-reconstruction

 Need very good timing, vertex and momentum resolution

Internal conversion background

• Allowed radiative decay with internal conversion:

 $\mu^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} e^{\scriptscriptstyle +} \vee \overline{\nu}$

 Only distinguishing feature: Missing momentum carried by neutrinos

Detector Design: Phase I

Data Acquisition

• Or: Additional selection

Sensitivity - Mu3e Phase I

- Start 2020
- Phase II with a high intensity muon beam line at PSI under study

Beyond $\mu^+ \rightarrow e^+e^-e^+$:

µ → eX and Dark Photons

Thesis Ann-Kathrin Perrevoort

Niklaus Berger - DM@LHC, April 2018 - Slide 26

Familons in Mu3e

- Spontaneously broken flavour symmetry: Goldstone boson(s) called familons
- Can be a light dark matter candidate
- Lead to $\mu \rightarrow eX$, where X a familon
- µ → eX can also show up in other models, search for it with the large muon decay data set at Mu3e

Signature and Background

- Signal: Two-body decay: Monoenergetic positron
- Background: All other positrons, dominated by Michel decay, smooth momentum distribution
- Bump hunt on the positron spectrum (all tracks...)

Search strategy

- Not possible to save all tracks: Use histograms from online reconstruction
- Baseline: Use only outgoing part of tracks (short/4 hits)
- Potential farm upgrade: Use also recurling part (long, 6/8 hit)

Previous experiment: TWIST

R. Bayes et al. "Search for two body muon decay signals". In: *Phys. Rev.* D91.5 (2015), p. 052020. DOI: 10. 1103/PhysRevD.91.052020. arXiv: 1409.0638 [hep-ex].

- TWIST at TRIUMF
- Limits on the $\mu \rightarrow eX \ BF$ in the few $10^{\text{-6}}$ region

Results

Dark Photons in Mu3e

Dark photon can be radiated, wherever a photon can be radiated

Three cases:

- Dark photon is long-lived/decays to dark particles
- Dark photon goes to e^+e^- immediately
- Dark photon goes to e⁺e⁻ at a displaced

M

vertex (under study)

Invisible dark photons

 $\mu \rightarrow e \nu \overline{\nu} A'$ is a four-body decay...

• Shift to Michel spectrum

Invisible dark photons

 $\mu \rightarrow e \nu \overline{\nu} A'$ is a four-body decay...

• Shift to Michel spectrum

Invisible dark photons

 $\mu \rightarrow e \nu \overline{\nu} A'$ is a four-body decay...

- Shift to Michel spectrum
- Can also come from detector misalignment
- Not really promising

Dark Photons in e⁺e⁻

 $\mu \rightarrow e\nu\overline{\nu}(A' \rightarrow ee)$ has the same visible final state as our signal: Will not be filtered away

Background is internal conversion decay $\mu^+ \rightarrow e^+e^-e^+\nu\overline{\nu}$

Two e⁺e⁻ combinations

Branching Fraction Limits

And on the $m_{A'}$ - ϵ plane

Summary

- Exciting range of experiments going on-line: New lepton flavour violation limits upcoming
- Mu3e very competitive for $\mu \rightarrow eX$ searches
- Improve by 2-3 orders of magnitude relative to TWIST in phase I
- Can access currently uncovered dark photon parameters
- Displaced vertices currently under study