The Mu3e Experiment

Searching for the lepton flavour violating decay $\mu \to eee$

Moritz Kiehn¹ on behalf of the Mu3e Collaboration

¹) Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany

The Mu3e experiment is a novel experiment to search for the lepton flavour violating (LFV) decay $\mu \to eee$ with an ultimate sensitivity of one in 10^{16} muon decays. This would be an improvement in sensitivity by four orders of magnitude compared to previous experiments. The Standard Model prediction for the branching ratio of this decay mode is less than one in 10^{50}. Any observation of such a decay is therefore a clear indicator of new physics.

The improvements are made possible by a novel experimental design based on high voltage monolithic active pixel sensors for high spatial resolution and fast readout and hodoscopes using scintillating fibres and tiles providing precise timing information at high particle rates.

Abstract

Requirements
- High rates
- Excellent momentum resolution
- Great vertex resolution
- Good timing resolution
- Extremely low material budget

Signal
- $\sum \mathbf{p}_i = 0$

Backgrounds
- Combinatorial $\sum \mathbf{p}_i \neq 0$

Detector Concept

Transverse View
- Phase 2: Recurl station + Timing tiles
- Phase 1b: Recurl station + Timing tiles + Timing fibres
- Phase 1a: Central pixel detector + Timing tiles + Timing fibres

Longitudinal View
- Target: Inner pixel layers
- Outer pixel layers

Muon Beam
- Existing / Future Beamlines at the Paul-Scherrer Institute, Switzerland

Pixel Sensors
- High Voltage Monolithic Active Pixel Sensors
- $80 \times 80 \mu m^2$ pixel size
- Thinned to $< 50 \mu m$
- Total thickness of 4 layers $< 4 \times X_0$
- Binary readout
- Total number of pixels ~ 300 million

Target
- Extended hollow double cone target
- $\sim 70 \mu m$ Aluminium
- Reduces combinatorial background

Timing
- $200 \mu m$ scintillating fibres in the central detector
- Thick ($\sim 1 cm$) scintillating tiles in the recurl stations for precise timing

Magnet & Cooling
- Solenoid Magnet $\sim 1 T$
- Cooling using gaseous Helium

Readout
- Triggerless readout ~ 100 Gbyte / s
- Online tracking and event filter based on GPUs
- Data reduction to ~ 50 MByte / s for storage and offline analysis

Expected Performance for Phase 2 (simulated)

- Single Track Momentum Resolution
- Signal Decay Mass Resolution
- Branching Ratio Sensitivity

Central Detector and Construction Tool
- Sensor Strip Sandwich
- Thinned HV-MAPS Sensors
- $25 \mu m$ Flexprint Power & Signals
- $25 \mu m$ Kapton Support Structure

Mechanical Prototypes
- Kapton Support Structure
- Inner Pixel Layers
- Outer Pixel Layers (Single Segment)

Setup at DESY
- MuPix Prototype
- Electron beam 3-6 GeV

Setup at CERN
- MuPix Prototype v2
- High Voltage Monolithic Active Pixel Sensor
- 42×36 pixels
- $10 \times 89 \mu m^2$ pixel size
- Binary Readout
- Single Threshold
- Developed by Ivan Peric, ZITI Mannheim

Example Measurement: Single Hit Resolution
- Work in Progress

Internal View
- Not coincident

Signal
- $\sum \mathbf{p}_i = 0$

Combinatorial
- $\sum \mathbf{p}_i \neq 0$

Particles
- μ, ν, e, π, K, ϕ, Δ, Ξ