The Mu3e Tile Detector

KIRCHHOFF-INSTITUT FÜR PHYSIK

The $\mu \rightarrow$ eee Decay

In the Standard Model of elementary particle physics, the decay $\mu \rightarrow$ eee can occur via lepton mixing. It is however suppressed to an unobservable low branching fraction of O(<10⁻⁵⁰). Any observation of $\mu \rightarrow eee$ would be a clear signal for new physics, and many models predict enhanced lepton flavor violation, e.g. super-symmetry, grand unified models, left-right symmetric models, models with an extended Higgs sector, large extra dimensions etc. Since the LFV proceeds via virtual particles – either in penguin loops or at tree level, the $\mu \rightarrow$ eee decay allows to probe mass scales far beyond the reach of direct searches, like at the LHC.

The Mu3e Experiment Tracking & Vertexing Aimed momentum resolution $\approx 0.3 \text{ MeV/c}^2$ Aimed vertex resolution $\approx 200 \ \mu m$ Extremely low material budget required \Rightarrow HV-MAPS, thinned to < 50 μ m **Recurl pixel layers** Scintillator tiles Inner pixel layers Scintillating fibres

Signal

Three coincident electron tracks from

the same vertex with $\Sigma E_e = m_u$

Backgrounds

- Radiative decay with internal conversion $\mu \rightarrow eeevv$ (BR 3.4 × 10-5)
- \Rightarrow Best possible momentum resolution
- Accidental coincidences of tracks from Michel decays with electron-positron pairs from Bhabha scattering, photon conversion etc.
- \Rightarrow Excellent vertex and timing resolution

Silicon Photomultipliers (SiPM)

Working principle

- Array of pixels (typ. 100 -10.000 / mm²)
- Pixel signal independent of #photons
- Pixels connected to common output
- #detected photons \leftrightarrow #fired pixels

Signal Generation

Simulation Framework

Tile-Detector Prototype

Testbeam Setup @ DESY

Flex

Detector Requirements

- Time resolution < 100 ps
- Maximum efficiency \Rightarrow Minimal signal pileup

Challenges

- High hit/data-rate O(MHz)
- High radiation dose
- Space constraints

First prototype

- 4x4 channels
- STiC 2 readout chip
- Flex-print connection

Testbeam Results

Array

- ≈70 ps time resolution
- ≈98% efficiency
- Dead-time ≈150 300 ns
- Pile-up < 3% for phase I
- Optical cross-talk observed
- \Rightarrow Baseline requirements for phase I fulfilled
- Only some minor optimization needed •

- Detailed SiPM simulation
- Input: Basic SiPM & light pulse parameters
- Model for full dynamic range

Contact: Patrick Eckert – patrick.eckert@kip.uni-heidelberg.de