The Mu3e experiment searches for the lepton flavor violating decay $\mu^+ \rightarrow e^+ e^+ e^-$, aiming at a sensitivity of 1 in 10^{16} decays. Any observation of a signal would indicate new physics beyond the Standard Model.

A high precision silicon tracking detector combined with excellent timing resolution from scintillating fibers and tiles will measure the momenta, vertices and timing of the decay products of muons stopped in a target to suppress background.

The trigger-less readout system will deliver ~100 GB/s of data. A network of optical links and FPGAs sends the full detector information for a time slice to one node of the filter farm. Tracks are fitted by the GPU of the PC using a 3D tracking algorithm for multiple scattering dominated environment. Then, three-track vertices are reconstructed, allowing for a reduction of the output data rate to below 100 MB/s by removing combinatorial background.

The Mu3e collaboration will measure the momenta, vertices and timing of the decay products of muons stopped in a target to suppress background. The trigger-less readout system will deliver ~100 GB/s of data. A network of optical links and FPGAs sends the full detector information for a time slice to one node of the filter farm. Tracks are fitted by the GPU of the PC using a 3D tracking algorithm for multiple scattering dominated environment. Then, three-track vertices are reconstructed, allowing for a reduction of the output data rate to below 100 MB/s by removing combinatorial background.

Momentum Resolution

- Ω: bending angle
- $\sigma_p/p \sim \theta_{MS}/\Omega$
- $A \Omega = \pi$, scattering cancels to first order

- Apply magnetic field
- Use recurling tracks
- Minimize material

GPU Workload

- Number of possible triplet candidates: ~ (number of hits per layer)3
- Loop over all combinations for:
 - Geometrical selection cuts
 - Triplet Fit
 - Propagation to 4th layer
 - Vertex estimate (work in progress)
- Compute in parallel on 2048 cores of GPU

- Process 10^{10} triplets/s
- 98% of true tracks found
- Reduce combinatorics by factor 300
- Reduce further with vertex constraint

Results

- Signal event:
 - 3 tracks
 - Common vertex
 - No missing energy

- Up to 100 tracks per reconstruction frame of 50 ns
- Triggerless → fully reconstructed on filter farm level

Signal & Background

- Combinatorial Background
 - Not coincident in time or place

Target

- Hollow double cone
- Large area → spread out vertices

Beam

- Paul-Scherrer Institute, Switzerland
- *Up to* 2×10^9 low energy μ/s

Pixel Sensors

- High Voltage Monolithic Active Pixel Sensors
- Thickness of 1 layer < 1‰ of a radiation length
- Maximum readout frequency ~ 20 MHz
- Digital readout
 - Spatial resolution ~ 20 μm

Timing

- ~ 1 cm thick scintillating tiles
 - $\sigma_t \sim 70$ ps
- 250 μm scintillating fibers
 - $\sigma_t \sim 1$ ns

Target

- Inner pixel layers
- Scintillating
- Outer pixel layers
- Recurl pixel layers
- Scintillator tiles

Magnet & Cooling

- 1 T solenoidal magnetic field
- Gaseous helium for cooling

Readout

- Triggerless
- ~ 100 GB/s to online farm
- Track finding & reconstruction on GPUs

Abstract

- Electron energy: 10 - 50 MeV
- Momentum resolution σ_p dominated by multiple Coulomb scattering

- Triplet Track Reconstruction on GPUs for the Mu3e Experiment

- The Mu3e experiment searches for the lepton flavor violating decay $\mu^+ \rightarrow e^+ e^+ e^-$, aiming at a sensitivity of 1 in 10^{16} decays. Any observation of a signal would indicate new physics beyond the Standard Model.

- A high precision silicon tracking detector combined with excellent timing resolution from scintillating fibers and tiles will measure the momenta, vertices and timing of the decay products of muons stopped in a target to suppress background.

- The trigger-less readout system will deliver ~100 GB/s of data. A network of optical links and FPGAs sends the full detector information for a time slice to one node of the filter farm. Tracks are fitted by the GPU of the PC using a 3D tracking algorithm for multiple scattering dominated environment. Then, three-track vertices are reconstructed, allowing for a reduction of the output data rate to below 100 MB/s by removing combinatorial background.

Reconstruction

- Ω: bending angle
- $\sigma_p/p \sim \theta_{MS}/\Omega$
- $A \Omega = \pi$, scattering cancels to first order

- Apply magnetic field
- Use recurling tracks
- Minimize material

Multiple Scattering Fit

- Ignore spatial uncertainty
- Multiple scattering at middle hit of three hits (triplet)
- Minimize multiple scattering:
 \[
 \chi^2 = \frac{\phi_M^2}{\sigma_{MS}^2} + \frac{\phi_S^2}{\sigma_{MS}^2} + \frac{\phi_{MS}^2}{\sigma_{MS}^2}
 \]

- Process 10^{10} triplets/s
- 98% of true tracks found
- Reduce combinatorics by factor 300
- Reduce further with vertex constraint

* : on Nvidia GTX 980