Introduction

- **bias tuning**
- **Configurable matching window**
- **Compact design**
- **Mu3e fiber detectors**
- **Linearized Time**
- **SPI**
- **FWHM**
- **LVDS serial link**
 - Test chip fabricated in 2015
 - Bridge
 - Picosecond pulse laser with wavelength of 460 nm
 - **System**
 - **50 ps**
 - **Timing threshold and energy threshold triggering**
 - **Single Photon Timing Resolution**:
 - **Silicon proven in STiCv3**
 - **Low timing jitter**
 - **SiPM**
 - **Mu3e Tile detector: 100 H. Chen**
 - **UMC 180 nm**
 - **Max. matching window width: 2.5**
 - **External validation in L1_FIFO**
 - **LVDS driver**
 - **Fully**
 - **Munwes**
 - **Focused Laser spot on single pixel: < 3 µm**
 - **Jitter < 20 ps**
 - **block diagram**
 - **time binning**
 - **Common**
 - **Termination**
 - **Mu3e Fiber detector: 500**
 - **Matching window resolution: 78 ns**
 - **Single**
 - **Temperature dependent**
 - **Silicon**
 - **SiPM**
 - **32**
 - **SiPM**
 - **Designed for 1.28**
 - **readout chip with high timing**
 - **CRC for**
 - **High Dark Count Rate (DCR)**
 - **differential structure**
 - **HV**

Motivation

- **Mu3e experiment**
 - Looking for new physics by searching for
 \(\mu^+ \rightarrow e^+e^\nu \), which is forbidden in standard model (BR < 10^{-16}).
- **Challenges on readout electronics:**
 - **High timing resolution** to reduce the combinatorial background and to facilitate event reconstruction:
 - **Mu3e Tile detector: 100 ps**
 - **Mu3e Fiber detector: 500 ps**
 - **High event rate** to collect enough data in reasonable experiment run time:
 - **Mu3e Fiber detector: 1.3 MHz/channel**

Silicon Photomultiplier

- **Array of Avalanche Photodiodes in Geiger mode allows for photon counting measurements.**
 - **Pros:**
 - Low timing jitter
 - High Gain (~ 10^6)
 - Low operating voltage (20 ~ 100 V)
 - Compact design
 - Insensitive to external magnetic field
 - **Cons:**
 - Temperature dependent
 - High Dark Count Rate (DCR)

MuTRiG Introduction

- **32-channel Mixed-Mode ASIC**
- **UMC 180 nm CMOS technology**
- **SiPM readout chip with high timing resolution and high data rate**
- **System On Chip**:
 - analog frontend + TDC channel
 - digital part
- **External validation in L1_FIFO**
 - **High speed LVDS data link (1.28 Gbps)**
 - **Configurable output event data structure**
 - **CRC for data transmission error detection**
 - **Event counter for event rate monitoring**
 - **SPI slow control for chip configuration**
 - **Prototype submitted in Sep. 2016**

Analog Frontend and TDC

- **Analog frontend:**
 - Fully differential structure
 - Single-ended or differential connection scheme with SiPM
 - Timing threshold and energy threshold triggering
 - Linearized Time-over-threshold method for energy measurement
 - SiPM bias tuning within ~500 mV
 - Jitter < 20 ps for input charge > 300 fC
 - Silicon proven in STiCv3[1] submissions
- **TDC[2]:**
 - 16-stage VCO ring locked by PLL to 640 MHz external clock
 - 50 ps time binning
 - Jitter < 40 ps
 - < 0.1 LSB with DNL correction
 - Silicon proven[1]
- **Single Photon Timing Resolution Measurements with STiCv3:**
 - **SiPM: HAMAMATSU MPPC S13360-1350CS**
 - Picosecond pulse laser with wavelength of 460 nm
 - Focused Laser spot on single pixel: < 3 µm
 - Single Photon Timing Resolution: ~150 ps FWHM

External Validation in L1_FIFO

- **Reduced load of output data link** by only sending event data within matching window of the trigger signal:
 - Configurable matching window
 - Matching window resolution: 78 ns
 - Max. matching window offset: 1.25 µs
 - Max. matching window width: 2.5 µs

Gigabit LVDS Serial Data Link

- **Boosted output data rate** with gigabit LVDS transmitter and double data rate serializer:
 - Bridge-Switched Current Source LVDS driver
 - Common-mode feedback
 - Double data rate
 - Designed for 1.28 Gbps
 - LVDS serial link test chip fabricated in 2015
 - Eye diagram of PRBS data with 8b/10b encoding

Contact Information

- Huangshan Chen: chen@kip.uni-heidelberg.de
- Wei Shen: w.shen@kip.uni-heidelberg.de

Reference: