Towards a measurement of the mercury EDM using ultracold atoms

Simon Stellmer University of Bonn

QUANTUM METROLOGY

The universal approach to measure EDMs

General idea:

T-violation is equivalent to CP-violation (because of CPT!)

General concept:

Larmor frequency: $h\nu = |2\mu B \pm 2dE|$

The universal approach to measure EDMs: *colder is better*

	next-generation experiments:					
neutron EDM	spallation sou reactor UCNs:	rces:	PSI, ESS Lund, ASS, various other institutes ILL, FRM II, various other institutes Sussex/ILL, 2006	2.9 x 10 ⁻²⁶ e cm		higher neutron flux, improved cooling in He or D ₂ , (n2EDM @ PSI, CryoEDM @ ILL, FRM II,)
electron EDM	atoms: molecules:	Cs-133 TI-205 Fr-210 YbF ThO HfF ⁺	Penn State, Austin Texas, LBNL Berkeley, 2002 CYRIC, Japan Ed Hinds, Imperial College, 2011 ACME collaboration, Harvard/Yale, 2018 Cornell/Ye, JILA, 2017	1.6 x 10 ⁻²⁷ e cm 1.0 x 10 ⁻²⁷ e cm 1.1 x 10 ⁻²⁹ e cm 1.3 x 10 ⁻²⁸ e cm		laser cooling & magneto-optical trapping of molecules (Imperial, Yale, ACME, JILA,)
atomic EDM	thermal: MOT: liquid:	Hg-199 Rn-221 Ra-225 Xe-129	Fortson/Heckel, Seattle, 2016 Chupp, TRIUMF Argonne, 2016 Chupp, U of Michigan, 2001	7.4 x 10⁻³⁰ e cm 1.4 x 10 ⁻²³ e cm 7.0 x 10 ⁻²⁸ e cm		ultracold atoms: Radium-225 (Argonne)

Excluding beyond-SM thories (example: neutron EDM)

adapted from Ed Hinds group

The Washington Hg-199 experiment

Phys. Rev. Lett. 116, 161601 (2016)

Quantity	Expression	Limit	Ref.
\mathbf{d}_n	$\mathbf{S}_{\mathrm{Hg}}/(1.9~\mathrm{fm}^2)$	$1.6 \times 10^{-26} e \mathrm{cm}$	[21]
\mathbf{d}_p	$1.3 \times S_{\rm Hg}/(0.2 \ {\rm fm^2})$	$2.0 \times 10^{-25} e \mathrm{cm}$	[21]
\bar{g}_0	$S_{Hg}/(0.135 \ e \ fm^3)$	2.3×10^{-12}	[5]
\bar{g}_1	$S_{Hg}/(0.27 \ e \ fm^3)$	1.1×10^{-12}	[5]
\bar{g}_2	$S_{Hg}/(0.27 \ e \ fm^3)$	1.1×10^{-12}	[5]
$ar{ heta}_{QCD}$	$\bar{g}_0/0.0155$	1.5×10^{-10}	[22,23]
$(\tilde{d}_u - \tilde{d}_d)$	$ar{g}_1/(2 imes 10^{14}~{ m cm^{-1}})$	5.7×10^{-27} cm	[25]
C_S	$\mathbf{d}_{\rm Hg}/(5.9 \times 10^{-22} \ e {\rm cm})$	1.3×10^{-8}	[15]
C_P	$\mathbf{d}_{\rm Hg}/(6.0 \times 10^{-23} \ e {\rm cm})$	1.2×10^{-7}	[15]
C_T	$\mathbf{d}_{\rm Hg}/(4.89 \times 10^{-20} \ e {\rm cm})$	1.5×10^{-10}	see text

Theory: Phys. Rev. A 59, 4547 (1999)

MOT: 1000 atoms @ 40 µK Dipole trap: 50 atoms at 50 µK

Our approach

QUANTUM METROLOGY

- atomic EDM measurements with (non-radioactive) laser-cooled atoms
- find ways to improve sensitivity by using quantum phenomena

Choice of the atomic species

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
Ac	Th	Protactinium	uranium		Pu	Am	Cm	Bk	Cf	einsteinium ES	Fm	nende inn 100 Md	10 No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

The experimental setup

Taking a classical experiment into the quantum world

$$\delta d = \frac{\hbar}{2E \sqrt{2N\tau T}}$$

	Septtle (2016)	quMercury					
	Seallie (2016)	first try	after 5 years	2nd generation	Heisenberg		
voltage	15 kV	10 kV	30 kV	30 kV	30 kV		
electrode gap	1.1 cm	0.5 mm	0.5 mm	0.2 mm	1 mm		
E-field	13.6 kV/cm	200 kV/cm	600 kV/cm	1500 kV/cm	300 kV/cm		
spin decoherence $ au$	100 s	100 s	300 s	300 s	100 s		
atom number N	2 x 10 ¹⁴	10 ⁶	10 ⁸	10 ⁹	10 ⁶		
measurement time T	10 months	3 months	3 months	6 months	3 months		
sensitivity δd	7.4 x 10 ⁻³⁰ <i>e</i> cm	1.5 x 10 ⁻²⁸ <i>e</i> cm	7.6 x 10 ⁻³¹ <i>e</i> cm	7.1 x 10 ⁻³² <i>e</i> cm	2.6 x 10 ⁻³² <i>e</i> cm		
comments	Nominal δd of	Already six orders of	Improves Seattle	Improves Seattle			
	2 x 10 ⁻³³ <i>e</i> cm not	magnitude better	experiment by	experiment by			
	reached because of	than Rn-221 and Ra-	factor 10.	factor 100.			
	leakage currents.	225 experiments in a					
		dipole trap.					

Expected sensitivity of the quMercury experiment

Current status...

Laser cooling is a powerful tool

evaporative cooling

... but we can do better: sub-Doppler cooling

Narrow-line cooling

Katori group in 2008: 500,000 atoms of Hg-199 at 50 μK

Optical clocks with mercury

Katori group, RIKEN (Sr lattice clock)

NP 2018: Arthur Ashkin optical tweezers

6

$$U_{\rm dip}(\mathbf{r}) = -\frac{3\pi c^2}{2\omega_0^3} \left(\frac{\Gamma}{\omega_0 - \omega} + \frac{\Gamma}{\omega_0 + \omega}\right) I(\mathbf{r})$$

resonance frequency frequency of the of the atom laser

Evaporative cooling...

- is an efficient way to increase phase space density
- relies on re-thermalization of the atoms
- works only within a certain range of scattering properties

scattering cross section:
$$\sigma = 4\pi a_s^2$$

isotope	character	Ι	abundance
¹⁹⁶ Hg	boson	0	0.15 %
¹⁹⁸ Hg	boson	0	9.97 %
¹⁹⁹ Hg	fermion	1/2	16.87 %
²⁰⁰ Hg	boson	0	23.10 %
²⁰¹ Hg	fermion	³ / ₂	13.18 %
²⁰² Hg	boson	0	29.86 %
²⁰⁴ Hg	²⁰⁴ Hg boson		6.87 %

Bose-Einstein condensation of Strontium

$$\delta d = \frac{\hbar}{2E \sqrt{2N\tau T}}$$

Jobs & infos: stellmer@uni-bonn.de www.quantum-metrology.uni-bonn.de

Max-Planck-Institut für Radioastronomie

Physikalisches Institut

UNIVERSITÄT BONN