

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Institute of Metrology METAS

A milestone in the evolution of the International System of Units

Beat Jeckelmann

Metrology: the science and application of measurement

secure measurements and reference data

do you get what you pay for?

safely below radiation limits?

data quality for policy making sufficient?

underpin basic science

do constants of nature drift with time?

precise enough

drive innovation

efficiency? quality control in production?

to be competitive? **Global Temperatures** Nomaly (°C) Annual Average ive Year Averag 1900 1920 1940 1960 1980 1880

Worldwide comparability

Metre Convention

- Basis for the International System of Units (SI)
- And a global measurement infrastructure

Mutual recognition arrangement:

 \rightarrow 97.6 % of the world economy

→ The cornerstone of international Quality Infrastructure (QI)

→ Basis and condition sine qua non for world wide trade

Versailles, 16. November 2018.....

Outline

- The International System of Units SI: short history; structure
- Shortcomings of the present SI
- The concept of the revised SI
- Challenges:
 - Replacing the kg: Determination of the Planck constant
 - Boltzmann constant
- Conclusions

Meridian expedition

Jean-Baptiste J. Delambre (northern part)

Pierre Méchains (southern part)

1792 - 1798 Measurement of the length of the meridian arc through triangulation

Mètre des archives 1799

1801: Helvetic metre (iron)

A tous les temps, à tous les peuples....

France, loi du 4 juillet 1837

"...à partir du **1 janvier 1840**, tous poids et mesures autres que les poids établis par les lois des 18 germinal an III et 19 frimaire an VIII, constitutives du système métrique décimal, seront interdits sous les peines portées par l'article 479 du code pénal ".

The metre convention 1875

CGPM: General Conference of Weights and Measures

BIPM: International Bureau of Weights and Measures
CCs: Consultative Committees

CCU: Consultative Committee for Units

1889: Prototype metre and kilogram

World Geodetic System 1984 meridian arc between pole and equator: **10001.966 km**

Deviation: 200 ppm

90% Platin, 10% Iridium

 $1 \text{ kg} = 1 \text{ dm}^3 \text{ water at } 4^\circ \text{C}$

Short history of the metric system

The SI today

- 7 Base units

- Values chosen by convention
- Derived units

Various types of unit definitions, based on:

- Artefact
- Physical state
- Fundamental constant
- "Technical" constant

Practical units

Photometric unit

- 1 Candela = Luminous intensity of a source in a given direction,
- monochromatic radiation 540 THz,
- Radiant intensity = 1/683 W/sr

Measurement of light adapted to the human eye

Unit definitions and shortcomings

The kilogram

The kilogram: present definition

"The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram." (CGPM, 1901)

... immediately after cleaning and washing by a specified method (*mise en pratique*, CIPM 1989).

Periodical verification of the kg

The ampere

Ampere definition

Using the ampere definition and equating mechanical and electrical power (1 Nm/s = 1 VA) leads to:

$$\mu_0 = 2\pi \frac{F}{I^2} \frac{r}{l} = 4\pi \cdot 10^{-7} \frac{N}{A^2}$$

Electrical quantum standards

 Quantum mechanical effects allow the realization of highly reproducible electrical standards:

Quantum voltmeter

Commercially available

Supracon AG | An der Lehmgrube 11 | 07751 Jena | Germany Telefon: +49 3641 2328100 | Fax: +49 3641 2328109 info@supracon.com | www.supracon.com

Electrical quantum standards (2)

K. Von Klitzing discovers the quantum Hall effect in 1980 \rightarrow Resistance standard

2D electron gas in high magnetic field

 $R_{\rm K}$: von Klitzing constant

Practical electrical units

 To make best use of the good reproducibility and worldwide availability of the quantum standards, the conventional values for the Josephson- and von Klitzing constants were introduced as of January 1, 1990.

 K_{J-90} = 483 597.9 GHz/ V → rel. uncertainty in the SI : 0.4 ppm R_{K-90} = 25 812.807 Ω 0.1 ppm

- Worldwide uniformity and improvement of electrical calibrations as a consequence of the conventional units.
- The uncertainty of the constants does only apply if electrical units are linked with mechanical units.

The effect of the 1990 conventional values

Differences in unit realization in different countries

PSI 25 18.03.2019

The practical electrical subsytem

Unit definition: the second

Realisation of the s: Cs fountain

New definition for the second?

- Properties of the selected Cs transition limit the accuracy of the realization
- Next definition: Frequency of an optical transition $(GHz \rightarrow THz)$

Optical lattice clock, RIKEN

The kelvin

Concept of the revised SI

- Determination of the Planck constant
- Boltzmann constant

PSI

James Clerk Maxwell (1870)

« If we wish to obtain standards of length, time and mass which shall be absolutely permanent, we must seek them not in the dimensions, or motion or the mass of our planet, but in the wavelength, the period of vibration, and absolute mass of these imperishable and unalterable and perfectly similar molecules. »

Units and fundamental constants

Concept for the revised SI

- Choose seven (fundamental) constants and fix their values.
- presentation of the definition of the entire system using a single statement of the values of the seven chosen constants.
 the constants set the scale for the system.
- With the fixed constants and with the help of the laws of physics, all units in the SI may be realized.
- A distinction between base and derived units is no longer necessary. (for reason of continuity with the past however, the concept of base units will be kept).

Challenge 1: Replacing the kilogram prototype

- Link the unit of mass to fundamental constants
- Experiments needed, that are able to establish this link with $\Delta m/m \le 10^{-8}$.

Approach A

"From microscopic to macroscopic world..."

count atoms

Approach B

"establish link between electrical and mechanical quantities via the force laws and benefit from the electrical quantum standards..."

quantum Hall effect , Josephson effect

"Counting" atoms

Step 1: Link between microscopic and macroscopic mass

Density measurement in a Si single crystal

$$n_x = 8\frac{V}{a^3},$$
$$m = n_x \cdot m_{Si}$$

X-ray crystal density experiment (XRDC)

- M(Si), molar mass: isotopic content (²⁸Si, ²⁹Si, ³⁰Si) measured using mass spectrometry
- lattice constant **a** : X-ray interferometer
- **Volume**: interferometric measurement of the sphere
- *n***=8** ?: lattice defects, surface effects

Uncertainty using ²⁸Si : 2×10^{-8}

Link to the Planck constant

Bohr Model of the hydrogen atom

$$\frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Rydberg constant
$$R_{\infty} = \frac{m_e \alpha^2 c}{2h}$$

2h

Si sphere
$$m_e = \left(\frac{m_e}{m_{Si}}\right)_r m_{Si} \longrightarrow h = \frac{c\alpha^2}{R_{\infty}} \left(\frac{m_e}{m_{Si}}\right)_r m_{Si}$$

Electric approach: Watt balance

Two phase experiment (B. Kibble, 1976)

Watt balance (2): Dynamic phase

Combination of the phases

$$m = C \frac{f_{J1}f_{J2}}{gv}h$$

The METAS watt balance

CODATA- values for h

Challenge 2: Boltzmann constant

Experiments Boltzmann constant

AGT: acoustic gas thermometry;

DCGT: dielectric constant gas thermometry;

JNT: Johnson noise thermometry.

The seven constants

Unit		SI old
second	S	$\Delta v (^{133}\text{Cs})_{\text{hfs}}$
meter	m	С
kilogram,	kg	<i>m</i> (<i>K</i>)
ampere,	А	μ_0
kelvin,	К	\mathcal{T}_{TPW}
mole,	mol	<i>M</i> (¹² C)
candela,	cd	K _{cd}

CODATA adjustment 2017

Metrologia 55 (2018) L13-L16

https://doi.org/10.1088/1681-7575/aa950a

Short Communication

The CODATA 2017 values of h, e, k, and N_A for the revision of the SI

D B Newell¹, F Cabiati, J Fischer, K Fujii, S G Karshenboim, H S Margolis¹, E de Mirandés, P J Mohr, F Nez, K Pachucki, T J Quinn, B N Taylor, M Wang, B M Wood and Z Zhang

Committee on Data for Science and Technology (CODATA) Task Group on Fundamental Constants

E-mail: dnewell@nist.gov

Received 2 August 2017, revised 19 October 2017 Accepted for publication 20 October 2017 Published 29 January 2018

Abstract

Sufficient progress towards redefining the International System of Units (SI) in terms of exact values of fundamental constants has been achieved. Exact values of the Planck constant h, elementary charge e, Boltzmann constant k, and Avogadro constant N_A from the CODATA 2017 Special Adjustment of the Fundamental Constants are presented here. These values are recommended to the 26th General Conference on Weights and Measures to form the foundation of the revised SI.

Keywords: international system of units, fundamental constants, SI redefinition

Definition of the revised SI

The International System of Units, the SI, is the system of units in which

- the ground state hyperfine splitting frequency of the caesium 133 atom Δv(¹³³Cs)_{hfs} is exactly 9 192 631 770 hertz,
- the speed of light in vacuum c is exactly 299 792 458 metre per second,
- the Planck constant h is exactly 6.626 070 15 ×10⁻³⁴ joule second,
- the elementary charge e is exactly 1.602 176 634 ×10⁻¹⁹ coulomb,
- the Boltzmann constant k is exactly 1.380 649 ×10⁻²³ joule per kelvin,
- the Avogadro constant N_A is exactly 6.022 140 76 ×10²³ reciprocal mole,
- the luminous efficacy K_{cd} of monochromatic radiation of frequency
 540 ×10¹² Hz is exactly 683 lumen per watt.

Are constants constant?

Frequencies of different clocks depend differently on fundamental constants

Constraints placed on time variation of the **fine structure constant** α and the **proton-to-electron mass ratio** μ , from frequency measurements in ¹⁷¹Yb+, ⁸⁸Sr+, ⁸⁷Sr, ^{199Hg}+, Dy and ²⁷Al+.

Timeline for the revised SI

 16. Nov. 2018: Decision at the 26. General Conference for Weights and Measures

20. May 2019:

World metrology day; Practical implementation of the revised SI

Implementation of the revised SI

- No changes for the units **second**, **metre and candela**
- The kg has to be realized through experiments like the watt balance and the XRCD; The kilogram prototype will have an uncertainty.
- The practical electrical subsystem becomes obsolete; the quantum effects realize the units directly in the SI. As a consequence small step-changes in results will occur.

Voltage: 1.07 X 10⁻⁷ (rel. change) Resistance: 1.78 X 10⁻⁸

Electrical units in the revised SI

h and e fixed:

Electrical quantum effects realise the electrical units directly.

ampere

Implementation (2)

- Kelvin: The experiments used for the Boltzmann constant measure now temperature directly. The scale will improve. The temp. of the triple point will have an uncertainty.
- Mole: No link to the kilogram anymore; the molar mass of ¹²C has an uncertainty.

Conclusion

- 1. The planned revision changes and improves the SI fundamentally.
- 2. A set of "defining constants" sets-up the system.
- 3. The system is independent of specific experiments improved insights and technologies make improved unit realizations possible.
- 4. The realization is possible everywhere.
- 5. According to current knowledge, the system is stable over time.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Institute of Metrology METAS

Thank you very much for your attention