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Some quotes – for fun

• “If someone tells you they understand quantum mechanics
then all you’ve learned is that you’ve met a liar.”

R. P. Feynman

• “Anyone who is not shocked by quantum theory has not
understood it.”

N. Bohr

•“We have to ask what it means!”
K. G. Wilson

In my opinion, only Wilson’s challenge remains significant.

****

In this lecture, I propose to find out which features of quantum
theory might be shocking at first sight. I will then attempt to
explain why they should not shock you, and what it all means.
Incidentally, I don’t think I am a liar
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1. What this lecture will be about

New Foundations of Quantum Mechanics are proposed: the

“ETH - Approach to Quantum Mechanics”

where “E” stands for Events, “T” for Trees, and “H” for Histories.
This approach enables us to introduce a precise notion of “events”
into Quantum Mechanics (↗ Haag), explain what it means to
observe an event by recording the value of an appropriate physical
quantity, and to exhibit the stochastic dynamics of states of
isolated open systems featuring events. It adds to the standard
formulation of the theory two simple, but fundamental hypotheses
concerning the emergence of “events” and their effect on the
evolution of states of such systems.

The “ETH - Approach to QM” results in a “Quantum Theory
without observers”. It does away with “extensions of Quantum
Mechanics”, all of which have remained unacceptably vague.



A metaphor of Quantum Mechanics

Some say: “Shut up and calculate!” But let’s abandon this maxim
and try to open the “quantum black box” !



2. Why might we be shocked by Quantum Mechanics?

Many if not most people appear to be confused about the deeper
meaning of Quantum Theory. Asking twenty-five professors of theoretical
physics to explain their understanding of the Foundations of QM you are
likely to get ten different answers most of which contradict some or
several of the other ones. – Worse, generations of students are
indoctrinated with erroneous claims about QM; e.g., that the
Schrödinger-picture dynamics of states and the Heisenberg-picture
dynamics of “observables” are equivalent, ...

Soon one hundred years after the discovery of matrix mechanics by
Heisenberg, Born, Jordan, and Dirac, this is quite shocking and represents
an intellectual scandal, which we had better remove, as soon as possible!

Unfortunately, in 60 minutes I will not reach this goal! (To accomplish
something valuable and lasting, one would have to organise a one- or
two-semester course on these matters!)

My discussion will be fairly non-technical, yet somewhat daring. I would
say, it represents an exercise in “natural philosophy”.



A lightening review of unusual or strange features of
Quantum Mechanics

I Bell’s Inequalities: Quantum-mechanical correlations between values
of physical quantities (e.g., polarisations of a “Bell pair” of photons)
measured in two independent labs violate Bell’s inequalities, in the
sense that the numerical range of the qm correlation matrix exceeds
the one of the corresponding classical correlation matrix; (↗ Tsirel-
son). – Has been checked experimentally!

I Kochen-Specker Theorem: Shows that the following two
assumptions are incompatible with Quantum Mechanics:
• All physical quantities have definite values at any given time.
• The values of physical quantities are independent of the

measurement context.

Example: Squares of spin-components of a spin-1 particle. –
∃ experiments!

Conclusions: 1. 6 ∃ “local” theories of commutative hidden variables
reproducing the predictions of Quantum Mechanics (if dim(H) > 2).
2. Bell-type “non-locality” of Quantum Mechanics.



The Schrödinger Equation does not describe the evolution
of states of isolated systems featuring events

I Wigner’s Friend:

Courtesy of Frauchiger & Renner

Agent F measures z-component of spin of a silver atom, pepared in
state 1√

2
(| ↑〉+ | ↓〉), with outcome s ∈ {↑, ↓}; state of spin of silver

atom after measurement given by ψS = |s〉. Instead, W regards the
lab containing F as one big quantum system, L, in a state evolving
according to a Schrödinger Equation ⇒ Assigns pure state

ψL = 1√
2

(|s =↑ ;D+,F+〉L + |s =↓ ;D−,F−〉L)

to L, which could be tested by a suitable measurement applied to L.
This leads to a contradiction with the description given by F and
shows that W should not use the Schrödinger Eq. to describe the
evolution of the state of L! (More sophisticated versions proposed
by Lucien Hardy, Popescu et al., Frauchiger-Renner ...)



And Quantum theory cannot be fully predictive, because ...

Setup of a Gedanken-Experiment (↗ Faupin-F-Schubnel):

↑ ↑

Q = sub-system “confined” to Ω Particle P propagates to the right →

Time evolution of P ess. indep. of Q (cluster props.) → Application:

︸ ︷︷ ︸
Q:={spin filter∨ particle P′}⊂Ω, shaded area := ess. supp of orbital wave function of P



... Quantum theory is fundamentally probabilistic –
in spite of the deterministic nature of the Schrödinger Eq. –
Temporary assumptions (leading to a contradiction):

I P and P ′: Spin- 1
2 particles prepared in a spin-singlet initial state;

spin filter prepared in a poorly known initial state not entangled
with initial state of P ′ and P.

I Dynamics of state of total system fully determined by Schrödinger
equation. In particular, initial state of spin filter determines whether
P ′ will pass through it or not, (given that the initial state of P ′ ∨ P
is a spin-singlet state, with P ′ and P moving into opposite cones).

I Correlations between outcomes of spin measurements of P ′ and of
P are as predicted by standard quantum mechanics, (relying on the
“Copenhagen interpretation”).

Fact: Heisenberg-picture dynamics of observables (spin, etc.) referring to
P is ess. independent of dynamics of Q := {P ′ ∨ spin filter}. This
follows from our choice of initial conditions & cluster properties of time
evolution! Hence spin of P ess. conserved before measurement ⇒

Expectation value of spin of P ≈ 0,∀ times!

But this contradicts the third (last) assumption stated above!



Relativistic theories are not fully predictive, because ...
Space-time with an event horizon. (Observer sits at “Present”; is unaware
of dangers lurking from outside his past light-cone; he might get killed at
†. Events 1 & 2 are space-like separated; event 3 is in the future of 2)

︸ ︷︷ ︸
t0: time right after inflation→ event horizon⇒ initial conditions not fully accessible!

Past = History of Events / Future = Ensemble of Potentialities

This fundamental structure must be retained in Quantum Mechanics!



3. Recap of the “Copenhagen Interpretation” of QM

In the Copenhagen Interpretation of QM the state/wave function,
Ψ, of a physical system S does not have an “ontological status”.
According to Born and Heisenberg : Ψ is merely a mathematical
object enabling us to predict probabilities of different possible
values a physical quantity X̂ can take in case this quantity is
measured at a certain sharp time t. If the measured value of X̂ at
time t is given by ξ then the state of the system immediately after
measuring X̂ must be taken to be an eigenstate corresponding to
the eigenvalue ξ of a linear operator X (t) representing X̂ at time
t, (“projection postulate”).The probability of measuring
ξ ∈ spec(X̂ ) ≡ spec(X (t)) is given by Born’s Rule.

In the absence of measurements/observations, the q.m. state Ψ
of a physical system and its evolution in time mean: Nothing !
There is essentially no invariant information encoded in Ψ and its
Schrödinger-pict. time evolution, Ψ(t) = U(t, t ′) Ψ(t ′), t, t ′ ∈ R ,
beyond information on energy spectra (of generators of U).



Evolution of states when measurements are made

In the Heisenberg picture, states of a system S do not evolve in
time, except at times when a physical quantity, X̂ , is measured,
and then they must be changed in accordance with the

“Projection Postulate”:
Assume, for simplicity, that X̂ has pure-point spectrum, (possibly
only finitely many eigenvalues). Suppose that the operator X (t)
represents X̂ at time t, and consider its spectral decomposition,

X (t) =
∑

ξ ∈ spec(X̂ )

ξ Πξ(t)︸ ︷︷ ︸
spect.proj .

Let Ψ be the state of the system S right before X̂ is measured at
time t. If ξ ∈ spec(X̂ ) is the measured value of X̂ then the state
to be used to make predictions of measurement outcomes at later
times (> t) is determined by the following



Critique of the Copenhagen Interpretation

Projection Rule:

Ψ 7→ Πξ(t)Ψ/‖Πξ(t)Ψ‖, (5)

where ‖Πξ(t)Ψ‖2 is the Born probability of measuring the value ξ.
∃ natural generalisation of Born’s Rule, due to Lüders, Schwinger
and Wigner, that promises to determine the probabilities of entire
histories of outcomes in arbitrarily many measurements of different
physical quantities made at subsequent times, (“LSW rule”) ...

Critique:

I Mysterious/ominous role of observers who perform
measurements. Role of “free will” of observers?

I Act of measuring a physical quantity not described by theory.

I Measurements take place instantaneously → unphysical!

I If measurement-acts of observers are not specified theory is
totally un-predictive.



4. The “ETH Approach” to Quantum Theory
Next, we address the question of what is meant by “events” featured by
isolated systems, and of how they can be recorded (in direct/projective
measurements/observations). I sketch what I call the “ETH Approach”
to QM. For simplicity I consider non-relativistic theories:
Let S be an isolated physical system. Pure states of S are given by unit
rays in a separable Hilbert space HS ; general states by density operators,
ω, acting on HS , with ω(A) := Tr(ω · A), for any bd. operator A on HS .

Time is a fundamental quantity in n.r. physics. The time axis is given
by R. Let’s suppose the present time is t0, and let I be an arbitrary
interval of future times, i.e., I ⊂ [t0,∞).

Definition: “Potential future events” in an isolated system S –
“potentialities” – are described by certain orthogonal projections acting
on HS & associated with future time intervals. The ∗algebra generated
by all “potential future events” associated with an interval, I , of future
times is denoted by EI , and we define

E≥t :=
∨

I⊂[t,∞)

EI , and E :=
∨
t∈R
E≥t
‖·‖
, (2)



The “Principle of Diminishing Potentialities”
(where the algebras E≥t , t ∈ R, are assumed to be weakly closed!2)

By definition,

EI ⊇ EI ′ if I ⊇ I ′ , E≥t ⊇ E≥t′ if t ′ > t .

The “Principle of Diminishing Potentialities” (PDP) is the statement
that

E≥t ⊃
6=
E≥t′ , whenever t ′>t ≥ t0 (3)

In Quantum Mechanics, an isolated open system S , including its
Heisenberg time-evolution, can be defined in terms of a “filtration”,
{E≥t}t∈R, of algebras of future potentialities satisfying PDP. –
(Examples!)

Given a state, ω, of S , we set

ωt := ω|E≥t
, i.e., ωt(A) = ω(A) , ∀A ∈ E≥t . (4)

2Considering weakly closed (von Neumann) algebras is convenient, because
the spectral projections of any element of the algebra will then also belong to
the algebra!



Events
Note that ω might be a pure state on E . But, since E≥t ⊂

6=
E , ∀t <∞,

ωt will generally be a mixed state on E≥t ; (entanglement!). This
observation opens our eyes/minds towards a clear notion of what might
be meant by “events” and to a theory of direct/projective observations
and recordings of “events”.

To render the above definition more precise, we say that a “potential
future event” is given by a family, {πξ|ξ ∈ X}, of disjoint orthogonal
projections contained in an algebra E≥t , for some t ≥ t0, (t0 = time of
“present”), with

∑
ξ∈X πξ = 1.

In accordance with the “Copenhagen interpretation” of QM, it appears
natural to say that a potential future event {πξ|ξ ∈ X} ⊂ E≥t actually
happens in the interval [t,∞) of times iff

ωt(A) =
∑
ξ∈X

ω(πξ Aπξ), ∀A ∈ E≥t , (5)

i.e., no off-diagonal elements appear on the R.S. of (5) → ωt is an
incoherent superposition of states in the images of the projections πξ!



Implications of PDP and of entanglement
In RQFT, PDP is a consequence of Huygens’ Principle (Buchholz) and
can be understood from the following drawing (see blackboard):

PDP → Theory of q.m. Measurements:
Suppose that a physical quantity X̂ is measured at time t or later. An
operator X (t) =

∑
ξ ξ Πξ(t) ∈ E≥t then represents X̂ at times ≥ t.

Following “Copenhagen”, one would argue that, ∀A ∈ E≥t :

ωt(A) =
∑

ξ∈spec(X̂ )

ωt(Πξ(t)AΠξ(t)) (6)

⇒ ωt([Πξ(t),A]) = 0,∀ξ, hence ωt([X (t),A]) = 0 . (7)



The centralizer of a state and its center

Thus, ωt is an incoherent superposition of eigenstates of X (t), and X (t)
belongs to what is called the “centralizer” of the state ωt .

Next, we render the meaning of Eq. (5) more precise.

Let M be a von Neumann algebra, and let ω be a state on M. Given an
operator X ∈M, we set

adX (ω)(A) := ω([A,X ]) , ∀A ∈M .

We define the centralizer of a state ω on M by

Cω(M) := {X ∈M|adX (ω) = 0}

Note that ω is a normalized trace on Cω(M) ... ! The center, Zω(M), of
Cω(M) is defined by

Zω(M) := {X ∈ Cω(M)| [X ,A] = 0, ∀A ∈ Cω(M)} . (8)

We are now prepared to introduce a notion of (actual) “events”.



Events happening around time t

Let S be an isolated open physical system.

Definition: If ωt is the state of S on the algebra E≥t , an “event” is
happening at time t iff Zωt (E≥t) contains at least two non-zero orth.
projections, π(1), π(2), which are disjoint, i.e., π(1) · π(2) = 0, and

0 < ωt(π
(i)) < 1 , for i = 1, 2 .

For simplicity suppose that Zωt (E≥t) is generated by a family of disjoint
orthogonal projections {πξ|ξ ∈ Xωt}, with Xωt = spec[Zωt (E≥t)] a
countable set.

“Axiom”: (2nd Law of QMTh) If card(Xωt ) ≥ 2 and ωt(πξ) 6= 0, for at
least two different points ξ ∈ Xωt , then the state ωt must be replaced by
one of the states ωt,ξ := ωt(πξ)−1 · ωt(πξ(·)πξ) , for some ξ ∈ Xωt with
ωt(πξ) 6= 0. The probability, probt(ξ), for the state ωt,ξ to be selected as
the state of S right after time t when the event has happened is given by

probt(ξ) = ωt(πξ) − Born′sRule (9)



Metaphoric picture of time evolution of states in QM
In the “ETH approach”, the time-evolution of states of a phys. system S
is apparently described by a stochastic branching process, with branching
rules as determined by the above “Axiom”, Eq. (9); (6= “decoherence
mumbo-jumbo”!) The following figure illustrates this claim:

t: time, ρ: initial state of S

E : “Events”, T : “T rees (of possible states of S), H: “H istories”
(of events/states) – probs. of “H istories” deteremined by Born’s Rule



“I leave to several futures my garden of forking paths”
Note that, in an autonomous isolated open system S , all the algebras(
E≥t
)
t∈R are isomorphic to one another, with E≥t ' N , where N is a

certain “universal algebra”. We define

XS :=
⋃

ω∈ phys states of S

Zω(N ) ,

the “non-commutative spectrum” of the system S .

The above picture “shows” that a continuous-time stochastic branching
process, with state space XS and transition probabilities given by Born’s
Rule, describes the time evolution of states of S . (The Schrödinger
equation can only be used to describe the dynamics of states of (very
boring) closed systems not featuring any events !)

A trajectory of states described by such a process is called a “history”.
The space of histories of a system S is equipped with probability
measures, µω, where ω is an “initial state” on the algebra E which S has
been prepared in; (see blackboard). A measure µω assigns a probability
to every history of events that may evolve from the initial state ω.
(Naive implementation: Lindblad evolution of density matrices)



5. Detection of events
We have characterised an isolated open system S in terms of a filtration
of algebras

{E≥t}t∈R ,

with (see PDP)

E≥t ⊃
6=
E≥t′ , whenever t ′ > t (10)

The flow of time in S , (i.e., the time evolution of S in the Heisenberg
picture) is encoded in the proper embeddings (10), which, in an auto-
nomous system S , are completely determined by its Hamiltonian.

However, the characterisation of S given in (10) is incomplete! To
retrieve physical information from (10) and from our definition of events,
we must specify operators representing “phys. quantities” characteristic
of S and – when observed/measured – may signal the occurrence of
events. Let

OS := {X̂ι|ι ∈ IS} (11)

be a list/set of abstract linear operators representing physical quantities
characteristic of S ; (usually, OS isn’t a linear space, let alone an algebra).



Measurements of physical quantities
For any operator Ŷ ∈ OS and any time t, we specify a concrete self-
adjoint operator Y (t) ∈ E≥t representing Ŷ at time t; (i.e., ∃ a repr. of
OS by operators on HS , ∀t ∈ R). For an autonomous system S , the
operators Y (t) and Y (t ′) are conjugated to one another by the
propagator of S .

Suppose that, at some time t, an event happens; i.e., ∃ a partition of
unity, {πξ|ξ ∈ Xωt} ⊆ Zωt ⊂ E≥t , by disjoint (commuting) orthogonal
projections, as above, containing ≥ 2 elements with positive probability of
occurrence representing possible events (one of which actually happens).

Let Ŷ ∈ OS , and let Y (t) =
∑
η∈spec(X̂ ) ηΠη(t) (spectral dec. of Y(t))

be the operator epresenting Ŷ at time t. If the “distance”3

dist
(
Πη(t), 〈πξ|ξ ∈ Xωt 〉

)
is “very small” , ∀η ∈ spec(Ŷ ) , (12)

then we say that the physical quantity Ŷ ∈ OS is observed/measured at
time t or later, because the state of S just after time t is then an approxi-
mate eigenstate of Y (t). The measurement of Ŷ is a signal of an event
happening at time t. ...

3defined in terms of “conditional expectations”



6. Summary and conclusions

1. So far, the “ETH Approach to QM” is merely a conceptual frame-
work. It is not effective (yet?) when one wants to do concrete q.m.
computations. However, it clarifies the Foundations of QM and it
hopefully helps to dispel those persistent confusions that surround
them. It leads to plenty of very concrete and interesting-looking
problems in functional analysis and probability theory (!).

2. I have spent quite a lot of time trying to develop a relativistic
version of the “ETH Approach”.
In fact, if we think that, fundamentally, isolated systems should be
autonomous we cannot avoid turning towards a relativistic
formulation of QM. So far, things look good! But I cannot claim to
have worked out all the details, yet. Tentative conclusions:

I Massless modes (electromagnetic- and gravitational field) play
a fundamental role in a quantum theory of “events” and of
direct (projective) observations/measurements – just like in
Relativity Theory !)

I Huygens’ Principle (as formulated by Buchholz), and hence the
even-dimensionality of space-time are crucial ingredients.



Theory of Indirect Measurements

3. The statistics of long sequences of events observed in an isolated
open system S tends to reveal important information about physical
quantities not accessible to direct observation. This is the basis of a
“Theory of Indirect (Weak) Measurements” (pioneered by Kraus,
Elizur and Vaidman, Maassen and Kümmerer, and others). This
theory rests on a clever exploitation of ”Entanglement”, combined
with statistics. It leads to an understanding of phenomena such as
the emission of photons from atoms, radioactive decay of nuclei, or
the emergence of particle tracks in a cloud chamber, ... Much
recent work!
Deeper problems are, however, encountered when one studies what I
have talked about in this lecture: The Quantum Theory of Events
and of direct (projective) measurements of physical quantities; and
the embedding of Quantum Theory into Relativity Theory.

I hope I have convinced you that there are reasons to be optimistic about
being able to make progress in this direction.

Thank you for your attention!



7. Appendix about relativistic quantum theory
What will a relativistic formulation of quantum theory tell us about
space-time?

First I assume that space-time is Minkowski space, M4, and, immodestly,
that my own proper time is the time of the Universe.

Worldline of JF ↑



A Theorem of D. Buchholz

Theorem
In an RQFT with massless particles, such as photons, the algebra, E≥Pt ,
of all physical quantities (“observables”) potentially measurable in the
future of the space-time point Pt is of type III1, and E ′≥Pt

∩ E≥Pt0
is of

type III1, too, for arbitrary times t0 < t.

This result is a consequence of “Huygens’ Principle” (in the jargon of
Buchholz): Photons from the region O will asymptotically escape along
lightcones in the future, V+

Pt0
, of Pt0 but below V+

Pt
. We cannot catch up

with them, anymore, if we have missed them just after they have been
emitted. Thus, the “Principle of Shrinking Potentialities” (PSP) holds in
the form proposed in Eq. (3) of the last Section:

E≥Pt0
⊃
6=
E≥Pt , for t > t0 , (8)

and we could now follow the arguments outlined in Sect. 5. However, I
don’t like to be in the center of the Universe; so, let’s take JF out of the
picture! Before knowing better I propose a formulation of relativistic
local Quantum Theory with roughly the following features:



A tentative formulation of relativistic local quantum theory

Let M be some (Hausdorff) topological space. We consider a fibre
bundle, qmF , with base space given by M and fibre above a point
P ∈M given by an ∞-dimensional ∗-algebra E≥P (whose weak closure,
also denoted by E≥P , in any representation determined by a “physical
state” can be expected to be of type III1). All the algebras {E≥P}P∈M
are assumed to be isomorphic to one another.4

Definition:
We say that a point P0 ∈M is in the past of a point P ∈M, written as
P0 ≺ P, iff ∃ an injection map ι : E≥P ↪→ E≥P0 , (enabling one to identify
E≥P with a subalgebra of E≥P0 ), and(

ι(E≥P)
)′
∩ E≥P0

is inifinite-dimensional. The relation ≺ introduces a partial order on M.
If P0 6 ≺P and P 6 ≺P0 then we say that P0 and P are space-like
separated, written as P0 X P. The relations “≺” and “X” determine a
“causal structure” on M.

4This could be generalized by introducing sheaves of algebras



What are “events”?
Let ω be a state on the algebra

E≥Σ :=
∨

P′∈Σ

E≥P′ ,

where Σ is a space-like hypersurface contained in M containing a point
P ∈M.

Definition:
We say that an “event” happens in P iff the center ZωΣ

(E≥P) ≡ ZP
ωΣ

of
the centralizer, CωΣ

(E≥P), is non-trivial and contains at least two
projections, ΠP

1 and ΠP
2 with the property that

0 < ωΣ(ΠP
i ) < 1, for 1 = 1, 2 .

Let X P
ωΣ

denote the spectrum of ZP
ωΣ

.

“Axiom” (compatibility – locality): If two points, P and P ′′, of M are
space-like separated, and “events”, ΠP

ξ and ΠP′′

η , actually happen in P
and P ′′ then

[ΠP
ξ ,Π

P′′

η ] = 0, ∀ ξ ∈ X P
ωΣ

and all η ∈ X P′′

ωΣ
. (9)



The compatibility axiom

The above axiom is illustrated in the following figure.

However, projections describing events happening in P ′ and P do not
commute in general, since P ′ is in the past of P.
Next, we propose to describe histories of events. We choose a space-like
surface Σ in M with the property that some bounded subset of Σ lies in
the past of a point P ∈M, as shown in the following figure.



Histories of events

We suppose that a state ωΣ is prescribed in the past of a space-like
surface Σ (choice of initial conditions). Our task is to find out whether
all events in the past of P but in the future of Σ (so-called “histories”),
together with the state ωΣ, uniquely determine a state, ωP , on the
algebra E≥P and, given ωP , to find out whether an event happens at P.



Probabilities of histories of events

For this purpose, we assume inductively that all such events are
known: Let P1,P2, ..., be all points in the past of P but not in the
past of any point on Σ with the property that, given initial condi-
tions corresp. to ωΣ, an event has happened at Pi , i = 1, 2, ....
With any of these points we can then associate an orthogonal
projection ΠPi

ξi
, ξi ∈ XPi

ωPi
= spec

(
ZPi
ωPi

)
. We define “history

operators”

H(P|ωΣ) :=
−→∏

i=1,2,...

ΠPi
ξi
, (10)

where Pi is either in the past of Pi+1, or Pi and Pi+1 are
space-like, ∀i = 1, 2, ... Thanks to the compatibility - locality
axiom the operator H(P|ωΣ) is well-defined! We then set

ωP(A) := prob
(
H(P|ωΣ)

)−1
ωΣ(H(P|ωΣ)AH(P|ωΣ)∗) , (11)

∀A ∈ E≥P , where



Events and “geometrical structure”

prob
(
H(P|ωΣ)

)
:= ωΣ

(
H(P|ωΣ) · H(P|ωΣ)∗

)
Generalized Born Rule

We are now able to answer the question whether an event happens
in the space-time point P:
An event happens in P iff the center ZωP

(E≥p) of the centraliser of
ωP is non-trivial and contains ≥ 2 disjoint orthogonal projections
with strictly positive probabilities in ωP , as predicted by Born’s
Rule.
This completes the induction step.

The “compatibility – locality axiom” can be expected to yield
non-trivial constraints on the geometry in the vicinity of two
space-like separated points, P and P ′′, if it is known that ∃ events
in P and P ′′ localised in explicitly known regions in the future of P
and of P ′′, respectively. But this will have to be investigated more
thoroughly in the future.



Summary and conclusions

I As in the genesis of Special Relativity, the e.m. field, as well
as Huygens’ Principle play key roles in the genesis of a
Quantum Theory solving the “measurements problem” –
which may not have been properly appreciated, so far.

I As in the genesis of General Relativity, the causal structure of
space-time and its curvature play key roles in Quantum
Theory:

I The non-commutative nature of Quantum Theory and the
“compatibility-locality axiom” determine a “causal structure”
(but not a Lorentzian metric) on M.

I Thanks to the “Principle of Shrinking Potentialities” (PSP)
and the natural presence of an “arrow of time” in the “ETH
approach” to Quantum Theory, the “Information Paradox”
and the “Unitarity Paradox” appear to dissolve.

I thanks you for your attention !


