Multi-messenger Astronomy with high-energy Neutrinos

Anna Franckowiak

HELMHOLTZ Young Investigators

Paul Scherrer Institut, February 28, 2019

The Multi-Messenger Picture

New Windows to the Universe

Cosmic rays reach 10²⁰eV

M. Tanabashi et al. (Particle Data Group), PRD 98, 2018

Neutrino Production Processes

Hadronuclear (e.g. star burst galaxies and galaxy clusters)

$$pp \rightarrow \begin{cases} X + \pi^{0} \rightarrow \gamma \gamma \\ X + \pi^{+} \rightarrow \mu^{+} v_{\mu} \rightarrow e^{+} v_{e} \overline{v}_{\mu} v_{\mu} \\ X + \pi^{-} \rightarrow \mu^{-} v_{\mu} \rightarrow e^{-} \overline{v}_{e} v_{\mu} \overline{v}_{\mu} \end{cases}$$

Photohadronic (e.g. gamma-ray bursts, active galactic nuclei)

$$p\gamma \rightarrow \Delta^{+} \rightarrow \begin{cases} p \pi^{0} \rightarrow p \gamma \gamma \\ n \pi^{+} \rightarrow n \mu^{+} v_{\mu} \rightarrow n e^{+} v_{e} \overline{v}_{\mu} v_{\mu} \end{cases}$$

Gamma-rays are not exclusively produced in hadronic processes

Neutrino Production Processes

Where Can We Look?

Event Signatures

a) through-going muon track E ~ 140 TeV b) Starting muon track E ~ 70 TeV

Charged current interaction of muon neutrino outside / inside the detector

Event Signatures

through-going muon track E ~ 140 TeV

- Starting muon track E ~ 70 TeV
- Shower event E ~ 1 PeV

Neutral current or electron neutrino charged current interaction

W

e.-m.

cascade

hadronic

cascade

Event Signatures

 $t \ [\mu s]$

- a) through-going muon track E ~ 140 TeV
- b) Starting muon track E ~ 70 TeV
- c) Shower event E ~ 1 PeV
- d) "double bang" event E ~ 200 PeV (simulated)

Tau neutrino charged current interaction

Only for very large energies the two showers can be separated (otherwise signature c)

Diffuse Neutrino Flux detected!

Similar energies in gamma rays, neutrinos & cosmic rays injected into our Universe!

Where do the Neutrinos come from?

IceCube high-energy events > 30 TeV (2010 - 2016)

Compatible with an isotropic distribution

 \rightarrow extragalactic origin of cosmic neutrinos

IceCube Target of Opportunity Program Public alerts since April 2016

- Single high-energy muon track events (> ~100TeV)
- 8 / yr, ~3 / yr of cosmic origin
- Median latency: 30 sec

IC-170922A – a 290 TeV Neutrino

Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Fermi-LAT finds Flaring Blazar

DESY. Fermi-LAT Coll., ApJ 846, 2017, Video credits: Matteo Giomi, Fermi-LAT Collaboration Page 17

Fermi-LAT finds Flaring Blazar, TXS 0506+056

The Multi-Messenger Light Curve

DESY. ICeCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

First observation at >100 GeV gamma rays

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018, VERITAS ApJL 2018

DESY.

The Multi-Messenger SED

DESY. ICeCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

How Likely is it a Chance Probability?

Step I: Draw a random neutrino from a representative Monte-Carlo sample of high-energy muon-track events

Step II: Are there any extragalactic Fermi sources close in space to the neutrinos?

Step III: What is the gamma-ray energy flux in the time bin when the neutrino arrives?

How Likely is it a Chance Probability?

$$TS = 2\log \frac{\mathcal{L}(n_s = 1)}{\mathcal{L}(n_s = 0)} = 2\log \frac{\mathcal{S}}{\overline{\mathcal{B}}}$$

Background PDF

$$\mathcal{B}(\vec{x}) = \frac{\mathcal{P}_{BG}(\sin\theta)}{2\pi}$$

Signal PDF

How Likely is it a Chance Probability?

DESY.

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Three models tested

Neutrino emission correlates with

$$\mathcal{S}(\vec{x},t) = \sum_{s} \frac{1}{2\pi\sigma^2} e^{-|\vec{x}_s - \vec{x}|^2/(2\sigma^2)} w_s(t) w_{\text{acc}}(\theta_s)$$

1. gamma-ray energy flux in the range 1-100 GeV

$$w_s(t) = \phi_E(t) = \int_{1 \text{ GeV}}^{100 \text{ GeV}} E_\gamma \frac{d\phi_\gamma(t)}{dE_\gamma} dE\gamma$$

2. relative gamma-ray flux variations in the range 1-100 GeV

$$w_s(t) = \phi_\gamma(t) / \langle \phi_\gamma
angle$$

3. very high-energy gamma-ray energy flux in the range 100GeV-1TeV (extrapolated from Fermi energy range)

$$w_s(t) = \phi_E(t) = \int_{100 \text{ GeV}}^{1 \text{ TeV}} E_\gamma \frac{d\phi_\gamma(t)}{dE_\gamma} dE\gamma$$

All tested models yield similar p-values

TXS 0506+056 in 3LAC

Redshift 0.3365±0.0010, Paiano et al. 2018 Among 50 brightest blazars (3%) in 3LAC bright radio sources (0.3%), Padovani et al. 2018

Intermediate synchrotron peak (ISP), BL Lac, if classified by line width "masquerading BL Lac", Padovani et al. 2019 based on radio and O II luminosities, emission line ratios, Eddington ratio

Fermi-LAT Collaboration, ApJ 810 (2015)

Are there more Neutrinos from this Source?

Are there more Neutrinos from this Source?

13±5 above the background of atmospheric neutrinos, 3.5σ

IceCube Coll., Science 2018

Neutrino Flare Properties

Neutrino luminosity (averaged over 158 days): $(1.2^{+0.6}_{-0.4}) \times 10^{47} \text{ erg s}^{-1}$

4 times larger than average gamma-ray luminosity!

Is there also a Gamma-ray Flare?

Spectral Change?

The Multi-Messenger Light Curve

DESY.

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

The Multi-Messenger Picture

The Multi-Messenger Picture

Production of ~300 TeV neutrinos need

- ~PeV protons
- photon target

Photon target

- observed in Xrays (~keV) if moving with the jet
- observed in UV (~10eV) if stationary

Electromagnetic cascade

dominated by synchrotron or inverse Compton emission

- Broadband EM emission from radio to γ-rays
- Absorption of high-energy γray emission
- Additional target for p-γ interactions

Modeling – leptonic

Modeling – leptonic, hadronic

Simple one-zone hadronic models violate X-ray constraints → More complex models needed

Modeling – leptonic, hadronic, Gin & Tonic

2017 neutrino + gamma flare:

2014/15 neutrino flare:

neutrino luminosity is ~4 times higher than gamma-ray luminosity

→ challenge for models

see e.g. Rodrigues et al. arXiv:1812.05939 A. Reimer et al. arXiv:1812.05654, F. Halzen et al., arXiv:1811.07439

Gao, Fedynitch, Winter, Pohl, Nature Astronomy 2018, Keivani et al., ApJ, 2018, MAGIC Coll., ApJ, 2018 ...

DESY.

Modeling – leptonic, hadronic, Gin & Tonic

2017 neutrino + gamma flare:

2014/15 neutrino flare:

Gao, Fedynitch, Winter, Pohl, Nature Astronomy 2018, Keivani et al., ApJ, 2018, MAGIC Coll., ApJ, 2018 ...

DESY.

Other interesting candidates

Other interesting candidates

Systematic search for Fermi-LAT catalogued counterparts (3FHL, 3FGL) to 37 well-reconstructed IceCube real-time alerts and archival events revealed on more coincidence. Chance coincidence ~30%

DESY.

Garrappa et al. arXiv:1901.10806

Other interesting candidates

Not significant if weighted with gamma-ray energy flux

Do blazars produce all IceCube neutrinos?

40 well-reconstructed track events, 20 signal events, 1-2 blazar/neutrino coincidences → ~10% contribution

Stacking

- Upper limit of 27% of the diffuse flux fit between 10 TeV and 100 TeV with a soft E^{-2.5} spectrum
- Upper limit of 40% and 80% for an E⁻² spectrum (compatible with the diffuse flux fit > 200TeV)

Averaged over 9.5 years, the neutrino flux of TXS 0506+056 by itself corresponds to 1% of the astrophysical diffuse flux

Correlation study of 3 years of IceCube data and 862 Fermi-LAT blazars

Other neutrino source candidates

Other neutrino source candidates

Zwicky Transient Facility

ZTF will reach world-leading speed in finding spectroscopically-accessible transients

Alert Management, Photometry and Evaluation of Light curves

AMPEL – Towards a MM real-time center

Alert Management, Photometry and Evaluation of Light curves

wave triggers

unique messengers from the high-energy Universe

Neutrinos can reveal the sources of high-energy cosmic rays

Sources still unknown → Electromagnetic counterparts are crucial to identify the sources First compelling candidate found!

Development of models describing **all** multi-messenger data in a consistent way.

