

10 April, 2018

Two-photon exchange corrections to elastic lepton-proton scattering and atomic spectroscopy

Oleksandr Tomalak Johannes Gutenberg University, Mainz, Germany

Muon discrepancies: new physics?

$$b
ightarrow s \mu^+ \mu^- \qquad \begin{array}{c} \sim 3-5\sigma \ ext{theory vs exp.} \end{array}$$

$$B
ightarrow \mu^+ \mu^-$$
 promising channel

Muon discrepancies: new physics?

$$b \to s \mu^+ \mu^- \qquad \begin{array}{c} \sim 3-5\sigma \\ \text{theory vs} \end{array}$$

$$B
ightarrow \mu^+ \mu^-$$
 promising channel

exp.

proton size discrepancy

 7σ electron vs muon

hadronic uncertainty is dominant in theory

Muon discrepancies: new physics?

$$b
ightarrow s \mu^+ \mu^- \qquad \begin{array}{c} \sim 3-5\sigma \ ext{theory vs exp.} \end{array}$$

$$B
ightarrow \mu^+ \mu^-$$
 promising channel

hadronic uncertainty is dominant in theory

Tool to explore the proton structure

photon-proton vertex

$$\Gamma^{\mu}(Q^2) = \gamma^{\mu} F_D(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_P(Q^2)$$

Dirac and Pauli form factors

lepton energy

 ω

momentum transfer

 $Q^2 = -(k - k')^2$

l-p amplitude

$$T = \frac{e^2}{Q^2} \left(\bar{u} \left(k', h' \right) \gamma_{\mu} u \left(k, h \right) \right) \cdot \left(\bar{N} \left(p', \lambda' \right) \Gamma^{\mu}(Q^2) N \left(p, \lambda \right) \right)$$

Form factors measurement

Sachs electric and magnetic form factors

$$G_E = F_D - \tau F_P \qquad G_M = F_D + F_P$$

Rosenbluth separation

Form factors measurement

Sachs electric and magnetic form factors

$$G_E = F_D - \tau F_P \qquad G_M = F_D + F_P$$

Proton form factors puzzle

Rosenbluth separation SLAC, JLab (Hall A, C)

Proton form factors puzzle

Rosenbluth separation SLAC, JLab (Hall A, C)

possible explanation two-photon exchange

Proton form factors puzzle

Discrepancy motivates model-independent study of 28

Scattering experiments and 2y

- charge radius extractions:

eH, eD spectroscopy	ep scattering
μH, μD spectroscopy	μp scattering ????

- μp elastic scattering is planned by MUSE@PSI(2018-19)
 measure with both electron/muon charges
- three nominal beam energies: 115, 153, 210 MeV, $Q^2 < 0.1 \text{ GeV}^2$

^{- 2}y correction in MUSE ?

Scattering experiments and 2y

- 2y is not among standard radiative corrections

 $\sigma^{\exp} \equiv \sigma_{1\gamma} (1 + \delta_{rad} + \delta_{soft} + \delta_{2\gamma})$

- soft-photon contribution is included

L.C. Maximon and J. A. Tjon (2000)

- hard-photon contribution: Feshbach correction

- charge radius insensitive to 28 model

- magnetic radius depends on 28 model

Elastic muon-proton scattering

and two-photon exchange

Elastic lepton-proton scattering and 2y

- leading 2y contribution: interference term

- 2% correction to cross section is given by amplitudes real parts

Elastic lepton-proton scattering and 28

- electron-proton scattering: 3 structure amplitudes

$$\mathbf{T}^{\mathrm{non-flip}} = \frac{e^2}{Q^2} \bar{l} \gamma_{\mu} l \cdot \bar{N} \left(\mathcal{G}_M(\nu, Q^2) \gamma^{\mu} - \mathcal{F}_2(\nu, Q^2) \frac{P^{\mu}}{M} + \mathcal{F}_3(\nu, Q^2) \frac{\hat{K} P^{\mu}}{M^2} \right) N$$
PAM Cuichen and M Vanda

P.A.M. Guichon and M. Vanderhaeghen (2003)

- muon-proton scattering: add helicity-flip amplitudes

$$\mathbf{T}^{\text{flip}} = \frac{e^2}{Q^2} \frac{m}{M} \bar{l}l \cdot \bar{N} \left(\mathcal{F}_4(\nu, Q^2) + \mathcal{F}_5(\nu, Q^2) \frac{\hat{K}}{M} \right) N + \frac{e^2}{Q^2} \frac{m}{M} \mathcal{F}_6(\nu, Q^2) \bar{l}\gamma_5 l \cdot \bar{N}\gamma_5 N$$

$$\underbrace{\text{M. Gorchtein, P.A.M. Guichon and M. Vanderhaeghen (2004)}}_{\text{M. Gorchtein, P.A.M. Guichon and M. Vanderhaeghen (2004)}}$$

- 2% correction to cross section is given by amplitudes real parts

Elastic lepton-proton scattering and 2y

$$\mathcal{G}_1 = \mathcal{G}_M + \frac{\nu}{M^2} \mathcal{F}_3 + \frac{m^2}{M^2} \mathcal{F}_5 \qquad \qquad \mathcal{G}_3 = \mathcal{G}_1 - \mathcal{G}_M$$
$$\mathcal{G}_2 = \mathcal{G}_M - (1-\tau)\mathcal{F}_2 + \frac{\nu}{M^2} \mathcal{F}_3 \qquad \qquad \mathcal{G}_4 = \mathcal{F}_4 + \frac{\nu}{M^2(1+\tau)} \mathcal{F}_5$$

better high-energy behavior

- 2y correction in terms of amplitudes:

$$\delta_{2\gamma} = \frac{2}{G_M^2 + \frac{\varepsilon}{\tau} G_E^2} \left\{ G_M \Re \mathcal{G}_1^{2\gamma} + \frac{\varepsilon}{\tau} G_E \Re \mathcal{G}_2^{2\gamma} + \frac{1 - \varepsilon}{1 - \varepsilon_0} (\frac{\varepsilon_0}{\tau} \frac{\nu}{M^2} G_E \Re \mathcal{G}_4^{2\gamma} - G_M \Re \mathcal{G}_3^{2\gamma}) \right\}$$

non-forward scattering at low momentum transfer

assumption about the vertex

Hadronic model

- one-photon exchange on-shell vertex:

$$\Gamma^{\mu}(Q^2) = \gamma^{\mu} F_D(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_P(Q^2)$$

ep scattering: P. G. Blunden, W. Melnitchouk and J. A. Tjon (2003)

IR divergencies are subtracted

L.C. Maximon and J. A. Tjon (2000)

- dipole electric and magnetic FFs:

$$G_E = F_D - \tau F_P = \frac{1}{(1 + Q^2/\Lambda^2)^2} \qquad G_M = F_D + F_P = \frac{\mu_P}{(1 + Q^2/\Lambda^2)^2}$$

Fixed-Q² dispersion relation framework

Analytical continuation. Elastic state

- contour deformation method:

angular integration

in complex plane

to integration on curve

deform integration contour keeping poles inside going to unph. region

analytical continuation
 reproduces results
 in unphysical region

 $d\Omega$

$$Q^2 = 0.1 \ GeV^2$$

- numerical method of analytical continuation

Hadronic model vs. dispersion relations

- imaginary parts are reproduced for all amplitudes
- real parts are reproduced by unsubtracted disp. relations for
 - F_DF_D amplitudes
 - F_DF_P amplitudes
 - F_PF_P amplitudes

all amplitudes

 $\mathcal{G}_M, \ \mathcal{F}_2, \ \mathcal{F}_3, \ \mathcal{F}_5$

$$\mathcal{G}_M + \frac{\nu}{M^2} \mathcal{F}_3, \ \mathcal{F}_2, \ \mathcal{F}_5$$

Hadronic model vs. dispersion relations

- imaginary parts are reproduced for all amplitudes
- real parts are reproduced by unsubtracted disp. relations for
 - F_DF_D amplitudes all amplitudes
 - $\mathbf{F}_{\mathbf{D}}\mathbf{F}_{\mathbf{P}}$ amplitudes $\mathcal{G}_{M}, \ \mathcal{F}_{2}, \ \mathcal{F}_{3}, \ \mathcal{F}_{5}$
 - **F**_P**F**_P amplitudes

 $\mathcal{G}_M + \frac{\nu}{M^2} \mathcal{F}_3, \ \mathcal{F}_2, \ \mathcal{F}_5$

 - fixed-Q² subtracted dispersion relation works for all amplitudes

Hadronic model vs. dispersion relations

- imaginary parts are reproduced for all amplitudes
- real parts are reproduced by unsubtracted disp. relations for
 - F_DF_D amplitudes all amplitudes
 - $\mathbf{F}_{\mathbf{D}}\mathbf{F}_{\mathbf{P}}$ amplitudes $\mathcal{G}_{M}, \ \mathcal{F}_{2}, \ \mathcal{F}_{3}, \ \mathcal{F}_{5}$
 - **F**_P**F**_P amplitudes

 $\mathcal{G}_M + \frac{\nu}{M^2} \mathcal{F}_3, \ \mathcal{F}_2, \ \mathcal{F}_5$

- fixed-Q² subtracted dispersion relation works for all amplitudes
- Regge analysis: amplitude \mathcal{F}_4 can be constant
- hadronic model violates unitarity
- amplitude \mathcal{F}_4 could require a subtraction

Low Q² and unsubtracted disp. relations

- amplitudes behaviour at $Q^2 \rightarrow 0$:

Low Q² and unsubtracted disp. relations

- amplitudes behaviour at $Q^2 \rightarrow 0$:

- proton state contribution to 2% correction:

Low Q² and unsubtracted disp. relations

- amplitudes behaviour at $Q^2 \rightarrow 0$:

- proton state contribution to 2% correction:

- dispersion relations approach requires a subtraction

Hadronic model results

- F_DF_D contribution dominates

Hadronic model results

Low-Q² inelastic 2% correction

Low-Q² inelastic 2% correction

Subtracted dispersion relations

- subtraction function in Compton scattering $\rightarrow \mathcal{F}_4$

- fix subtraction to model estimate

- result is similar to model calculation. Expect data

COMPASS proton radius experiment

- elastic μ p scattering at SPS with 100 GeV beam
- measure $G_E^2 + \tau G_M^2$ at forward angles
- test runs in 2018 and 2021; data taking in 2022

COMPASS proton radius experiment

- elastic μ p scattering at SPS with 100 GeV beam
- measure $G_E^2 + \tau G_M^2$ at forward angles
- test runs in 2018 and 2021; data taking in 2022

2y corrections?

- F_DF_D contribution dominates
- Feshbach correction (+ recoil)

$$\delta_{2\gamma} = \frac{\alpha \pi Q}{2\omega} \left(1 + \frac{m}{M} \right) \quad \Longrightarrow$$

2 orders lower than MUSE

- inelastic states: kinematically enhanced

- sub per mille level of 2% in COMPASS kinematics

Hyperfine splitting in ordinary

and muonic hydrogen

Lamb shift and hyperfine splitting in H

- 1S HFS in µH with 1 ppm accuracy at PSI, J-PARC, RIKEN-RAL

R. Pohl et al. (2016)

2γ correction to μ H HFS

lepton energy in lab frame *W*

- 3 forward lepton-proton amplitudes:

lepton energy in lab frame *W*

- 3 forward lepton-proton amplitudes:

- imaginary parts \leftrightarrow cross sections

- 28 correction to energy levels: amplitudes at threshold

lepton energy in lab frame

 ω

- 3 forward lepton-proton amplitudes:

$$T = \frac{f_{+}(\omega)}{4Mm} \bar{u}(k,h')u(k,h) \bar{N}(p,\lambda')N(p,\lambda)$$
$$-\frac{mf_{-}(\omega) + \omega g(\omega)}{8M(\omega^{2} - m^{2})} \bar{u}(k,h')\gamma^{\mu\nu}u(k,h) \bar{N}(p,\lambda')\gamma_{\mu\nu}N(p,\lambda)$$
$$+\frac{\omega f_{-}(\omega) + mg(\omega)}{4M(\omega^{2} - m^{2})} \bar{u}(k,h')\gamma_{\mu}\gamma_{5}u(k,h) \bar{N}(p,\lambda')\gamma^{\mu}\gamma_{5}N(p,\lambda)$$

lepton energy in lab frame

 ω

- 3 forward lepton-proton amplitudes:

$$T = \frac{f_{+}(\omega)}{4Mm} \bar{u}(k,h')u(k,h) \bar{N}(p,\lambda')N(p,\lambda)$$
$$-\frac{mf_{-}(\omega) + \omega g(\omega)}{8M(\omega^{2} - m^{2})} \bar{u}(k,h')\gamma^{\mu\nu}u(k,h) \bar{N}(p,\lambda')\gamma_{\mu\nu}N(p,\lambda)$$
$$+\frac{\omega f_{-}(\omega) + mg(\omega)}{4M(\omega^{2} - m^{2})} \bar{u}(k,h')\gamma_{\mu}\gamma_{5}u(k,h) \bar{N}(p,\lambda')\gamma^{\mu}\gamma_{5}N(p,\lambda)$$

- relation to non-forward amplitudes:

 $f_{+}(\omega) = e^{2}2M\omega \left. \frac{\delta_{2\gamma}(\omega, Q^{2})}{Q^{2}} \right|_{Q^{2} \to 0} \quad f_{-}(\omega) = e^{2}\mathcal{G}_{M}\left(\omega, Q^{2} = 0\right) \quad g\left(\omega\right) = -e^{2}\frac{m}{M}\mathcal{F}_{6}\left(\omega, Q^{2} = 0\right)$

2γ exchange

- 2γ through experimental input:

Dispersion relation framework

2γ exchange

- 2γ through experimental input:

- subtraction is needed for unpolarised amplitude $f_+^{2\gamma}$
- distinct result for polarised amplitude
- distinct result for $lp \rightarrow lX$ channel contribution

 $g^{2\gamma}$

 2γ exchange

- 2γ through experimental input:

- subtraction is needed for unpolarised amplitude $f_+^{2\gamma}$
- distinct result for polarised amplitude
- distinct result for $lp \rightarrow lX$ channel contribution

$$\int_{0}^{1} g_2(x, Q^2) \mathrm{d}x = 0$$

polarised amplitudes are in agreementnew derivation of Burkhardt-Cottingham sum rule

 $q^{2\gamma}$

- effective Hamiltonian:

 $\mathbf{H} \equiv -f_{+}^{2\gamma} - 4g^{2\gamma}\vec{\mathbf{S}}\cdot\vec{\mathbf{s}} - 4(f_{-}^{2\gamma} + g^{2\gamma})(\vec{\mathbf{S}}\cdot\hat{p})(\vec{\mathbf{s}}\cdot\hat{k})$

- effective Hamiltonian: $\mathbf{H} \equiv -f_{+}^{2\gamma} - 4g^{2\gamma}\vec{\mathbf{S}}\cdot\vec{\mathbf{s}} - 4(f_{-}^{2\gamma} + g^{2\gamma})(\vec{\mathbf{S}}\cdot\hat{p})(\vec{\mathbf{s}}\cdot\hat{k}) = -f_{+}^{2\gamma} + 4f_{-}^{2\gamma}\vec{\mathbf{S}}\cdot\vec{\mathbf{s}}$

 $\int g_2(x,Q^2) \mathrm{d}x = 0$

- effective Hamiltonian:

 $\mathbf{H} \equiv -f_{+}^{2\gamma} - 4g^{2\gamma}\vec{\mathbf{S}}\cdot\vec{\mathbf{s}} - 4(f_{-}^{2\gamma} + g^{2\gamma})(\vec{\mathbf{S}}\cdot\hat{p})(\vec{\mathbf{s}}\cdot\hat{k}) = -f_{+}^{2\gamma} + 4f_{-}^{2\gamma}\vec{\mathbf{S}}\cdot\vec{\mathbf{s}}$

- amplitude decomposition:

$$\mu_{\rm P} e^2 \Delta_{\rm HFS} = -g^{2\gamma}(m) + \frac{1}{2} f_{-}^{2\gamma}(m) = \frac{3}{2} f_{-}^{2\gamma}(m)$$

 $g_2(x,Q^2)\mathrm{d}x = 0$

- effective Hamiltonian:

 $\mathbf{H} \equiv -f_{+}^{2\gamma} - 4g^{2\gamma}\vec{\mathbf{S}}\cdot\vec{\mathbf{s}} - 4(f_{-}^{2\gamma} + g^{2\gamma})(\vec{\mathbf{S}}\cdot\hat{p})(\vec{\mathbf{s}}\cdot\hat{k}) = -f_{+}^{2\gamma} + 4f_{-}^{2\gamma}\vec{\mathbf{S}}\cdot\vec{\mathbf{s}}$

- amplitude decomposition:

$$\mu_{\rm P} e^2 \Delta_{\rm HFS} = -g^{2\gamma}(m) + \frac{1}{2} f_{-}^{2\gamma}(m) = \frac{3}{2} f_{-}^{2\gamma}(m)$$

Zemach correction in µH

- Zemach correction expanding form factors:

$$\Delta_{\rm Z} = \frac{8\alpha m_r}{\pi} \int_{Q_0}^{\infty} \frac{\mathrm{d}Q}{Q^2} \left(\frac{\mathrm{G}_{\rm M} \left(Q^2\right) \mathrm{G}_{\rm E} \left(Q^2\right)}{\mu_{\rm P}} - 1 \right) + \frac{4\alpha m_r Q_0}{3\pi} \left(-\mathrm{r}_{\rm E}^2 - \mathrm{r}_{\rm M}^2 + \frac{\mathrm{r}_{\rm E}^2 \mathrm{r}_{\rm M}^2}{18} Q_0^2 \right)$$

Zemach correction in µH

- Zemach correction expanding form factors:

$$\Delta_{\rm Z} = \frac{8\alpha m_r}{\pi} \int_{Q_0}^{\infty} \frac{\mathrm{d}Q}{Q^2} \left(\frac{\mathrm{G}_{\rm M} \left(Q^2\right) \mathrm{G}_{\rm E} \left(Q^2\right)}{\mu_{\rm P}} - 1 \right) + \frac{4\alpha m_r Q_0}{3\pi} \left(-\mathrm{r}_{\rm E}^2 - \mathrm{r}_{\rm M}^2 + \frac{\mathrm{r}_{\rm E}^2 \mathrm{r}_{\rm M}^2}{18} Q_0^2 \right)$$

- dependence on splitting: consistency check

Zemach correction in µH

- Zemach correction expanding form factors:

$$\Delta_{\rm Z} = \frac{8\alpha m_r}{\pi} \int_{Q_0}^{\infty} \frac{\mathrm{d}Q}{Q^2} \left(\frac{\mathrm{G}_{\rm M} \left(Q^2\right) \mathrm{G}_{\rm E} \left(Q^2\right)}{\mu_{\rm P}} - 1 \right) + \frac{4\alpha m_r Q_0}{3\pi} \left(-\mathrm{r}_{\rm E}^2 - \mathrm{r}_{\rm M}^2 + \frac{\mathrm{r}_{\rm E}^2 \mathrm{r}_{\rm M}^2}{18} Q_0^2 \right)$$

- dependence on splitting: consistency check

- 95 ppm change for μ H and ep radii with $Q_0 = 0.2$ GeV
 - 1.5-2 times more precise
 magnetic radius is equally important

2γ correction in eH 1S HFS

- measurements of 1S HFS in eH (21 cm line):

 $\nu_{\rm HFS}({\rm H}) = 1420.4057517667(9) \,\,{\rm MHz}$ 1970th

2γ correction in eH 1S HFS

- measurements of 1S HFS in eH (21 cm line):

 $\nu_{\rm HFS}({\rm H}) = 1420.4057517667(9) \,\,{\rm MHz}$ 1970th

- accuracy 10⁻¹² - precise extraction of TPE

- dispersive evaluation and phenomenological extractions agree

2γ correction in eH 1S HFS

- measurements of 1S HFS in eH (21 cm line):

 $\nu_{\rm HFS}({\rm H}) = 1420.4057517667(9) \,\,{\rm MHz}$ 1970th

- accuracy 10⁻¹² - precise extraction of TPE

- dispersive evaluation and phenomenological extractions agree

Connection between eH and µH

- saturation of Q-integrals:

$$\mathbf{R}^{\mathbf{i}} = \frac{\Delta^{\mathbf{i}}(Q_{\max})}{\Delta^{\mathbf{i}}} = \int_{0}^{Q_{\max}} \mathbf{I}^{\mathbf{i}}(Q) \mathrm{d}Q / \int_{0}^{\infty} \mathbf{I}^{\mathbf{i}}(Q) \mathrm{d}Q$$

Connection between eH and μ H

- saturation of Q-integrals:

- Zemach correction: proportional to reduced mass

 $\Delta_{\rm Z} + \Delta^{\rm pol} \sim m_r$

Connection between eH and μ H

- saturation of Q-integrals:

- Zemach correction: proportional to reduced mass

$$\Delta_{\rm HFS}(\mu {\rm H}) = \frac{m_{\rm r}(m_{\mu})}{m_{\rm r}(m_{e})} \Delta_{\rm HFS} \left({\rm eH}\right) + \Delta_{\rm HFS}^{\rm th}(m_{\mu}) - \frac{m_{\rm r}(m_{\mu})}{m_{\rm r}(m_{e})} \Delta_{\rm HFS}^{\rm th}(m_{e})$$

- Zemach correction vanishes and polarizability term is almost o

2γ correction in μ H from eH HFS

- error of TPE is significantly decreased

2γ correction in μ H from eH HFS

Conclusions

Conclusions

Thanks for your attention !!!