New Perspectives on Lepton Flavor Violation

Julian Heeck

Paul Scherrer Institute
4.12.2017

The Standard Model

Symmetries of the Standard Model

- Rephasing lepton and quark fields:

$$
\mathrm{U}(1)_{\mathrm{B}} \times \mathrm{U}(1)_{\mathrm{L}_{\mathrm{e}}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}} \times \mathrm{U}(1)_{\mathrm{L}_{\tau}} .
$$

- $\mathrm{B}+\mathrm{L}$ broken non-perturbatively,

$$
\Delta \mathrm{B}=3 \wedge \Delta \mathrm{~L}_{\mathrm{e}}=\Delta \mathrm{L}_{\mu}=\Delta \mathrm{L}_{\tau}=1
$$

but unobservably suppressed at low temperatures. ['t Hooft '76]

- Real global symmetry of SM:

$$
\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}} .
$$

- Can even promote to gauge symmetry by adding $3 \mathrm{~N}_{\mathrm{R}}$. [Araki, Heeck, Kubo, 1203.4951]

Neutrino oscillations

- Observations of $v_{\alpha} \rightarrow v_{\beta}$ prove that $\mathrm{M}_{\mathrm{v}} \neq 0$ and $\mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}$ is broken!
- B - L could still be conserved if neutrinos are Dirac.
[Heeck, 1408.6845]

Neutrino oscillation between three generations

Lepton flavor definitely violated, so where is it?

Neutrino mass \Rightarrow charged LFV?

- SM + Dirac neutrinos: all LFV is GIM suppressed:

$$
\frac{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \gamma\right)}{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \nu_{\alpha} \bar{\nu}_{\beta}\right)} \simeq \frac{3 \alpha_{\mathrm{EM}}}{32 \pi}\left|\sum_{\mathrm{j}=2,3} \mathrm{U}_{\alpha j} \frac{\Delta \mathrm{~m}_{\mathrm{j} 1}^{2}}{\mathrm{M}_{\mathrm{W}}^{2}} \mathrm{U}_{\mathrm{j} \beta}^{\dagger}\right|^{2}<5 \times 10^{-53} .
$$

[Petcov ‘77; Cheng \& Li ‘77]

- SM + heavy seesaw neutrinos:

$$
\begin{aligned}
& \left.\frac{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \gamma\right)}{\Gamma\left(\ell_{\alpha} \rightarrow \ell_{\beta} \nu_{\alpha} \bar{\nu}_{\beta}\right)} \simeq \frac{3 \alpha_{\mathrm{EM}}}{8 \pi} \right\rvert\, \underbrace{\left.\left.\left.\left(\mathrm{m}_{\mathrm{D}} \mathrm{M}_{\mathrm{R}}^{-2} \mathrm{~m}_{\mathrm{D}}^{\dagger}\right)_{\alpha \beta}\right|^{\prime}\right|^{2}{ }^{2}\right]}_{\mathrm{M}_{\mathrm{L}}^{2} / \mathrm{M}_{\mathrm{D}}^{2}} .
\end{aligned}
$$

$$
\mathrm{M}_{\nu}^{2} / \mathrm{M}_{\mathrm{R}}^{2} \quad \leftharpoonup \quad \begin{aligned}
& \text { fint-tuning or } \\
& \text { structure in } \mathrm{m}_{0} .
\end{aligned}
$$

Neutrino mass \nRightarrow charged LFV!

- Neutrino-mass induced charged LFV is unobservable.

Observation of CLFV \rightarrow beyond SM and beyond M_{v} !

- (Only exception: $0 v \beta \beta$ can probe $L F V\left(\Delta L_{e}=2\right)$ via M_{v}.)
- arXiv: many v-mass models can actually give large LFV:
- Low-scale/inverse/linear seesaw;
- SUSY seesaw;
- Radiative seesaw (Zee-Babu, Ma,...);
- $M_{v} \Leftrightarrow$ LFV connection possible but not necessary.

Approximate symmetries

- Flavor still approximate symmetry in charged lepton sector.
- Unavoidably broken by M_{v}, but this is unobservable.

Search for CLFV to learn more about flavor!

- Assuming heavy new physics, the best channels are

$$
\ell \rightarrow \ell^{\prime} \gamma, \ell \rightarrow \ell^{\prime} \ell^{\prime \prime} \ell^{\prime \prime \prime}, \mu \rightarrow \mathrm{e} \text { conv., } \mathrm{h} \rightarrow \ell \ell^{\prime}, \text { had } \rightarrow \ell \ell^{\prime}, \ldots
$$

- Organize operators/processes by quantum numbers under

$$
\mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}} .
$$

Currently being probed.

If you see $\tau \rightarrow \mu \mathrm{Y}$: still $\mathrm{U}(1)\left(\mathrm{L}_{\mu}+\mathrm{L}_{\mathrm{T}}-2 \mathrm{~L}_{\mathrm{e}}\right)$ symmetry.

If you see $\tau \rightarrow \mu y$ and $\tau \rightarrow e e \bar{\mu}$: still $Z_{2}(\mathrm{e} \rightarrow-\mathrm{e})$.

Interpretation of LFV

Observation of charged lepton flavor violation	\Rightarrow	Remaining symmetry
$\Delta\left(L_{\alpha}-L_{\beta}\right)=2$	$U(1)_{L_{\alpha}+L_{\beta}-2 L_{\gamma}}$	
$\Delta\left(L_{\alpha}+L_{\beta}-2 L_{\gamma}\right)=6$	$U(1)_{L_{\alpha}-L_{\beta}}$	
$\Delta\left(L_{\alpha}+L_{\beta}-2 L_{\gamma}\right)=6$ and $\Delta\left(L_{\alpha}-L_{\beta}\right)=2$	$\mathbb{Z}_{2}: \ell_{\gamma} \rightarrow-\ell_{\gamma}$	
$\Delta\left(L_{\alpha}+L_{\beta}-2 L_{\gamma}\right)=6$ and $\Delta\left(L_{\alpha}+L_{\gamma}-2 L_{\beta}\right)=6$	$\mathbb{Z}_{3}:\left(\ell_{\alpha}, \ell_{\beta}, \ell_{\gamma}\right) \sim(0,1,2)$	
$\Delta\left(L_{\alpha}-L_{\beta}\right)=2$ and $\Delta\left(L_{\alpha}-L_{\gamma}\right)=2$	-	
$\Delta\left(L_{\alpha}-L_{\beta}\right)=2$ and $\Delta\left(L_{\alpha}+L_{\gamma}-2 L_{\beta}\right)=6$	-	

- At least two orthogonal channels required for full LFV.
- Flavor violation by higher units more challenging.
- Easy to build models that single out certain channels, e.g. $\tau \rightarrow \mu \mathrm{y}$ or $\mathrm{T} \rightarrow \mathrm{e}-\mathrm{e}^{-} \mathrm{\mu}^{+}$.

Example: $\tau^{-} \rightarrow \mathrm{e}^{-} \mathrm{e}^{-} \mu^{+}$

- Conserves $L_{\mu}-L_{T}$, so impose this symmetry.
- Simplest UV model: add SU(2) , singlet k^{++}:

$$
\mathcal{L} \supset\left(\mathrm{g}_{\mu \tau} \bar{\mu}_{R}^{\mathrm{c}} \tau_{\mathrm{R}}+\mathrm{g}_{\mathrm{e}} \mathrm{e}_{\mathrm{R}}^{\mathrm{c}} \mathrm{e}_{\mathrm{R}}\right) \mathrm{k}^{++}+\text {h.c. } .
$$

- $\tau^{-} \rightarrow \mathrm{e}-\mu^{+}$allowed, everything else forbidden.
- Add N_{R} and singlet scalars to break $L_{\mu}-L_{T}$ in M_{R}.
- Could even use symmetry for texture zeroes in M_{v}.
[Araki, Heeck, Kubo, 1203.4951]
\checkmark oscillations but approximate symmetry in ℓ^{-}sector.

$\tau \rightarrow \mu-\mu-e^{+} e^{+} ?$

- Conserves $L_{\mu}+4 L_{e}-5 L_{T}$, impose to kill other modes.
- Not difficult to build, but rate is

$$
\Gamma \propto\langle H\rangle^{2} \frac{m_{\tau}^{11}}{m_{s}^{12}} .
$$

- Secretly dimension 10 operator.
- Would need new particles at 10 GeV for observable rate! Only possible for neutral fields, otherwise $Z \rightarrow$ SS. Not pretty...

Baryon number violation

Baryon number violation

- So far assumed $\Delta B=0$, but can also do $L F V$ with $\Delta B \neq 0$.
- Example: proton decay $(\Delta B=1)$.
- Super-K limits on $p \rightarrow e^{+} \pi^{0}, \mu^{+} \pi^{0}$ are $10^{34} y r s$!

Baryon number violation

- So far assumed $\Delta B=0$, but can also do LFV with $\Delta B \neq 0$.
- Example: proton decay ($\Delta \mathrm{B}=1$).
- Super-K limits on $\mathrm{p} \rightarrow \mathrm{e}^{+} \pi^{0}, \mu^{+} \pi^{0}$ are $10^{34} \mathrm{yrs}$!
- More interesting for flavor: $\mathrm{p} \rightarrow$ दеf:

channel	$\left(\Delta L_{e}, \Delta L_{\mu}\right)$	limit/years	
$p \rightarrow e^{+} e^{+} e^{-}$	$(1,0)$	793×10^{30}	IMB ‘99; SK can improve by $\sim 30!$
$p \rightarrow e^{+} \mu^{+} \mu^{-}$	$(1,0)$	359×10^{30}	
$p \rightarrow \mu^{+} e^{+} e^{-}$	$(0,1)$	529×10^{30}	
$p \rightarrow \mu^{+} \mu^{+} \mu^{-}$	$(0,1)$	675×10^{30}	
$p \rightarrow \mu^{+} \mu^{+} e^{-}$	$(-1,2)$	359×10^{30}	
$p \rightarrow e^{+} e^{+} \mu^{-}$	$(2,-1)$	529×10^{30}	

Effective operators

[Weinberg, '79 \& '80]

Different symmetry properties

Effective operators

- $\Delta \mathrm{B}=1$ proton decay operators:
- QQQL:
$\mathrm{d}=6, \quad \Delta \mathrm{~L}=1, \quad$ e.g. $\mathrm{p} \rightarrow \mathrm{e}^{+} \pi^{0}$.
- QQL̄Hd:
$d=7, \quad \Delta L=-1$, e.g. $p \rightarrow e^{-} \pi^{+} K^{+}$.
- QQQLL̄He:
$\mathrm{d}=10, \Delta \mathrm{~L}=1$, e.g. $\mathrm{p} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{+}$.
- dddLLLH:
$d=10, \Delta L=-3$, e.g. $p \rightarrow e^{-} v \pi^{+} \pi^{+}$.
- QudLLLHH: $d=11, \Delta L=3$, e.g. $p \rightarrow e^{+} \overline{v v}$.

Different symmetry properties

Effective operators

Impose B+L

Effective operators

- $\Delta \mathrm{B}=1$ proton decay operators:

Impose B+L

Effective operators

Impose B+3L

Effective operators

- $\Delta \mathrm{B}=1$ proton decay operators:

Impose B+3L

Effective operators

Impose B-L

Effective operators

- $\Delta \mathrm{B}=1$ proton decay operators:

$$
\text { - QQQL: } \quad \mathrm{d}=6, \Delta \mathrm{~L}=1, \quad \text { e.g. } \mathrm{p} \rightarrow \mathrm{e}^{+} \pi^{0} .
$$

QQL'Hd: $\quad d=7, \Delta L=-1$, e.g. $p \rightarrow e^{-} \pi^{+K}{ }^{\prime}$.

- QQQLL̄He: $\quad \mathrm{d}=10, \Delta \mathrm{~L}=1, \quad$ e.g. $\mathrm{p} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{+}$.

- QudiLLLitin: $\quad \mathrm{d}=11, \Delta \mathrm{~L}=3$, e.g. $p \rightarrow e^{\prime} \overline{\mathrm{v}}$.

Impose B-L

Effective operators

Impose $\mathrm{L}_{\mathrm{e}}+2 \mathrm{~L}_{\mu}-3 \mathrm{~L}_{\tau}$

Effective operators

- $\Delta \mathrm{B}=1$ proton decay operators:

QQLHd:	$d=7, \Delta L=-1$, e.g.p $-e^{-} \pi^{+} K^{+}$.
- QQQLL̄He:	$\mathrm{d}=10, \Delta \mathrm{~L}=1$, e.g. $\mathrm{p} \rightarrow \mathrm{e}^{+} \mathrm{e}^{+} \mu$.
- dddLLLLH:	$d=10, \Delta L=-3, ~ e . g . ~ p \rightarrow e v^{-} \bar{v}_{\mu} \pi^{+} \pi^{+}$.
- QudLLLHH:	$d=11, \Delta L=3, \quad$ e.g. $p \rightarrow \mu^{+} \bar{v}_{e} \bar{v}_{e}$.

Impose $L_{e}+2 L_{\mu}-3 L_{\tau}$

Lepton-flavored proton decay

$$
\Gamma \propto\langle\mathrm{H}\rangle^{2} \frac{\mathrm{~N}_{\mathrm{p}}^{12}}{\Lambda^{12}} \sim\left(10^{33} \mathrm{yr}\right)^{-1}(100 \mathrm{TeV} / \Lambda)^{12} .
$$

[Hambye, Heeck, in progress]

Lepton-flavored proton decay

- The decay $p \rightarrow e^{+} e^{+} \mu^{-}$or $p \rightarrow \mu^{+} \mu^{+} e^{-}$could be dominant!
- Conserves $B-L, L_{\tau}$, and $L_{e}+2 L_{\mu}-3 L_{\tau}\left(\right.$ or $\left.L_{\mu}+2 L_{e}-3 L_{\tau}\right)$.
- $35 \mathrm{~d}=10$ operators of the form QQQLL̄He.
- Rate suppressed:

$$
\Gamma \propto\langle\mathrm{H}\rangle^{2} \frac{\mathrm{~m}_{p}^{11}}{\Lambda^{12}} \sim\left(10^{33} \mathrm{yr}\right)^{-1}(100 \mathrm{TeV} / \Lambda)^{12} .
$$

- Easy channels, Super-K can probe 10^{34} yrs!
- UV completion @ 100 TeV could show up in flavor physics.
- Other channels, e.g. $\mathrm{p} \rightarrow \mathrm{e}^{+} \pi^{0}$, suppressed by v mass.
[Hambye, Heeck, in progress]

$$
\mathrm{p} \rightarrow \mathrm{e}^{+} \mathrm{e}^{+} \mu^{-}
$$

- Conserves $\mathrm{L}_{\mathrm{e}}+2 \mathrm{~L}_{\mu}-3 \mathrm{~L}_{\mathrm{T}}$; Impose!
- Only d=10 survives:

- Rate very suppressed:

$$
\Gamma \propto\langle\mathrm{H}\rangle^{2} \frac{\mathrm{~m}_{\mathrm{p}}^{11}}{\Lambda^{12}} \sim\left(10^{33} \mathrm{yr}\right)^{-1}(100 \mathrm{TeV} / \Lambda)^{12} .
$$

- UV complete with leptoquarks. Analogous for $p \rightarrow \mu^{+} \mu^{+} e^{-}$.
- More extreme: $\mathrm{p} \rightarrow \mathrm{e}^{+} \mathrm{e}^{+} \mathrm{e}^{+} \mu^{-} \mu^{-}$etc., probes $\Lambda \sim$ few TeV !

Low-hanging fruit for Super-K.

$p \rightarrow \mu^{+} \mu^{+} e^{-}$

- Minimal leptoquark example:

$$
\phi_{1} \sim(\mathbf{3}, \mathbf{3},-2 / 3), \phi_{2} \sim(\mathbf{3}, \mathbf{2}, 7 / 3) .
$$

- $\mathrm{L}_{\mu}+2 \mathrm{~L}_{\mathrm{e}}-3 \mathrm{~L}_{\mathrm{T}}$ ensures simple structure $y_{j} \overline{\mathrm{~L}}_{\mu} \phi_{1} \mathrm{Q}_{\mathrm{j}}^{\mathrm{c}}+\mathrm{f}_{\mathrm{j}} \overline{\mathrm{u}}_{\mathrm{j}} \phi_{2} \mathrm{~L}_{\mathrm{e}}+\lambda \phi_{1}^{2} \phi_{2} \mathrm{H}$.
- Also conserves B-L and lepton flavor, but gives lepton non-universality.
- Triplet LQ perfect for $\mathrm{b} \rightarrow \mathrm{s} \mu \mu$ anomalies:

$$
\mathrm{m}_{\phi_{1}} \simeq 30 \mathrm{TeV} \sqrt{\mathrm{y}_{2} \mathrm{y}_{3}} .
$$

Interesting pheno from proton decay @ 100 TeV !

$p \rightarrow \mathrm{e}^{+} \mathrm{e}^{+} \mu^{-}$

- R-parity violating MSSM:

$$
\begin{aligned}
& \lambda_{i j k} L_{i} L_{j} \overline{\bar{l}_{k}}+\lambda_{i j k}^{\prime \prime} \overline{\bar{u}_{\mathrm{i}}} \overline{\mathrm{~d}_{\mathrm{j}}} \overline{\mathrm{~d}_{\mathrm{k}}} \\
+ & \lambda_{\mathrm{ijk}}^{\prime} \mathrm{L}_{\mathrm{i}} \mathrm{Q}_{\mathrm{j}} \overline{\mathrm{~d}}_{\mathrm{k}}+\mu_{\mathrm{i}}^{\prime} \mathrm{L}_{\mathrm{i}} \mathrm{H}_{\mathrm{u}}
\end{aligned}
$$

- Impose $L_{\mu}+2 L_{e}+L_{\tau}$ for

$$
\lambda^{\prime}=0=\mu^{\prime} \text { and } \lambda=\lambda_{132} .
$$

- Add soft terms for sfermion mixing: $A_{d_{i j}} H_{d} \tilde{\mathrm{~d}}_{\mathrm{i}} \tilde{Q}_{j}-m_{\mathrm{ij}}^{2} \tilde{L}_{i} \tilde{L}_{j}$.
- $\tau \rightarrow e^{-} \mathrm{y}$ and n -n oscillations also allowed.
- Known for neutrino modes $p \rightarrow e^{+} v v, \mu^{+} v v, K^{+} \mu^{+} e v . .$. [Carlson, Roy, Sher, ‘95; Bhattacharyya, Pal, ‘99; Faroughy, Prabhu, Zheng, '15]
- Rich phenomenology.

Summary so far

- SM symmetry: $\mathrm{G}=\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}$.
- Effective field theory with Majorana v :

$$
\mathrm{L}=\mathrm{L}_{\mathrm{SM}}+\overbrace{\text { conserves } \mathrm{G}}^{\overbrace{\text { violates } \mathrm{G}}^{\Lambda}} \overbrace{\substack{\text { could conserve G or subgroup } \\ \Rightarrow \text { 'weird' channels dominate!? }}}^{\mathrm{M}_{\nu}}+\underbrace{}_{\sum_{\mathrm{j}} \frac{\mathcal{O}_{\mathrm{j}}}{\Lambda^{2}}+\sum_{\mathrm{j}} \frac{\mathcal{O}_{j}^{\prime}}{\Lambda^{3}}+\sum_{\mathrm{j}} \frac{\mathcal{O}_{\mathrm{j}}^{\prime \prime}}{\Lambda^{4}}+\ldots}
$$

But what if new physics is light?

Simple example: majoron

- 3 singlets $\mathrm{N}_{\mathrm{R}}+$ new scalar $\sigma=\left(\mathrm{f}+\sigma^{0}+\mathrm{iJ}\right) / \sqrt{2}$. $B-L$ breaking scale $\begin{aligned} & \text { Heavy scalar } \\ & \text { (inflaton?) }\end{aligned} \quad \begin{aligned} & \text { Goldstone boson: } \\ & \text { majoron }\end{aligned}$
[Chikashige, Mohapatra, Peccei, ‘81; Schechter, Valle, '82]
- Break $\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}}$ spontaneously: $\mathcal{L}=-\overline{\mathrm{L}} \mathrm{y} H N_{\mathrm{R}}-\frac{1}{2} \overline{\mathrm{~N}}_{\mathrm{R}}^{\mathrm{c}} \lambda \sigma \mathrm{N}_{\mathrm{R}}+$ h.c.

$$
M_{R}=\frac{\lambda f}{\sqrt{2}}
$$

- For $M_{R} \gg m_{D}: M_{\nu} \simeq-m_{D} M_{R}^{-1} m_{D}^{\top}$

$$
\simeq 1 \mathrm{eV}\left(\frac{\mathrm{~m}_{\mathrm{D}}}{100 \mathrm{GeV}}\right)^{2}\left(\frac{10^{13} \mathrm{GeV}}{\mathrm{M}_{\mathrm{R}}}\right) .
$$

Majoron couplings

- Tree level coupling only to neutrinos:

$$
\frac{\mathrm{iJ}}{2 \mathrm{f}} \bar{\nu}_{\alpha}^{\mathrm{c}} \gamma_{5}\left(\mathrm{~m}_{\mathrm{D}}^{*} \mathrm{M}_{\mathrm{R}}^{-1} \mathrm{~m}_{\mathrm{D}}^{\dagger}\right)_{\alpha \beta} \nu_{\beta}=-\frac{\mathrm{iJ}}{2 \mathrm{f}} \sum_{\mathrm{k}} \bar{\nu}_{\mathrm{k}} \gamma_{5} \mathrm{~m}_{\mathrm{k}} \nu_{\mathrm{k}}
$$

- One loop:

Off-diagonal!

$$
\frac{\mathrm{i}}{\mathrm{f}} \bar{\ell}_{\alpha}\left(\frac{\mathrm{m}_{\beta}}{8 \pi^{2} \mathrm{v}^{2}} \mathrm{P}_{\mathrm{R}}-\frac{\mathrm{m}_{\alpha}}{8 \pi^{2} v^{2}} \mathrm{P}_{\mathrm{L}}\right) \ell_{\beta}\left(\mathrm{m}_{\mathrm{D}} \mathrm{~m}_{\mathrm{D}}^{\dagger}\right)_{\alpha \beta}
$$

- Two loop: $\Gamma(J \rightarrow \gamma \gamma) \simeq \frac{\alpha^{2} \operatorname{tr}\left(m_{D} m_{D}^{\dagger}\right)^{2}}{4096 \pi^{\tau}} \frac{m_{j}^{3}}{v^{4 f^{2}}}\left|\sum_{\mathrm{f}} N_{c}^{f} T_{3}^{f} Q_{f}^{2} g\left(\frac{m_{j}^{2}}{4 m_{f}^{2}}\right)\right|^{2}$
[Heeck, Camilo Garcia-Cely, 1701.07209; see also Pilaftsis '94]

Properties

- Crucial observation: the two matrices are independent!

$$
\left\{\mathrm{m}_{\mathrm{D}}, \mathrm{M}_{\mathrm{R}}\right\} \leftrightarrow\left\{\mathrm{M}_{\nu}, \mathrm{m}_{\mathrm{D}} \mathrm{~m}_{\mathrm{D}}^{\dagger}\right\}
$$

[Davidson, Ibarra, hep-ph/0104076]

- Jēe' coupling can be large and of arbitrary structure.
- Similar couplings arise for familons or flavor Z'.
[Wilczek, ‘82; Reiss, '82; Grinstein, Preskill, Wise, 85; ...]
- Boson not necessarily massless, e.g. pseudo-Goldstone.
- Experimental signature depends on decay channel:

$$
\ell \rightarrow \ell^{\prime} \mathrm{J}, \quad \mathrm{~J} \rightarrow \operatorname{inv}, \ell^{\prime \prime} \ell^{\prime \prime \prime}, \gamma \gamma .
$$

$\ell \rightarrow \ell^{\prime}$ J with $\mathrm{J} \rightarrow$ invisible

- Standard LFV in seesaw:

$$
\frac{\Gamma\left(\ell \rightarrow \ell^{\prime} \gamma\right)}{\Gamma\left(\ell \rightarrow \ell^{\prime} \nu_{\ell} \bar{\nu}^{\prime}\right)} \simeq \frac{3 \alpha}{8 \pi}\left|\left(\mathrm{~m}_{\mathrm{D}} \mathrm{M}_{\mathrm{R}}^{-2} \mathrm{~m}_{\mathrm{D}}^{\dagger}\right)_{\ell^{\prime}}\right|^{2} .
$$

- Great signature, but requires light N_{R}
- With majoron: look for mono-energetic lepton:
[Pilaftsis, '94; Feng, Moroi, Murayama, Schnapka, '98; Hirsch, Vicente, Meyer, Porod, ‘09]

$$
\frac{\Gamma\left(\ell \rightarrow \ell^{\prime} \mathrm{J}\right)}{\Gamma\left(\ell \rightarrow \ell^{\prime} \nu_{\ell} \bar{\nu}_{\ell^{\prime}}\right)} \simeq \frac{3}{16 \pi^{2}} \frac{1}{\mathrm{~m}_{\ell}^{2} \mathrm{f}^{2}}\left|\left(\mathrm{~m}_{\mathrm{D}} \mathrm{~m}_{\mathrm{D}}^{\dagger}\right)_{\ell \ell^{\prime}}\right|^{2}
$$

- If $M_{R}=\operatorname{diag}(M): \frac{\Gamma\left(\ell \rightarrow \ell^{\prime} \gamma\right)}{\Gamma\left(\ell \rightarrow \ell^{\prime} J\right)} \simeq 2 \pi \alpha \frac{m_{\ell}^{2}}{M^{2}} \frac{f^{2}}{M^{2}}\left\{\begin{array}{l}\gg 1 \text { for } M \ll f, \\ \ll 1 \text { for }, M \sim f \gg m_{\ell} \text {. }\end{array}\right.$

$\mu \rightarrow \mathrm{e}$ J with $\mathrm{J} \rightarrow$ invisible

- TWIST, ‘15: limits on different anisotropies.
- Chiral coupling $\bar{\mu} \mathrm{P}_{\mathrm{L}} \mathrm{eJ}$ suppresses sensitivity!
[Heeck, Garcia-Cely, 1701.07209]
- Bremsstrahlung is competitive: $\mu \rightarrow \mathrm{e}$ J y.
 [Goldman et al, ‘87]
- Approximate limit

$$
\frac{\left|\left(m_{D} m_{D}^{\dagger}\right)_{\mu e}\right|}{v f} \lesssim 10^{-5}
$$

(a)

(b)

Searches for $\mu \rightarrow \mathbf{e X}$ with Mu3e

- Full reconstruction of all Michel decays is a big challenged for data acquisition
- $\mathrm{B}(\mu \rightarrow \mathrm{e} X) \sim 10^{-8}$ at $90 \% \mathrm{CL}$

recurling track in Mu3e
required full reconstruction of "recurlers"

$\mu \rightarrow e X$ with $X \rightarrow$ visible

- Take Xey $_{5} \mathrm{e} \mathrm{me}_{\mathrm{e}} / \wedge_{\text {ee }}$.
- Decay length determines signature.
- Displaced vertex gives new observable. [Heeck, Rodejohann, 1710.02062]

- Muon at rest:

$$
\gamma c \tau \simeq \frac{\pi \mathrm{~m}_{\mu} \Lambda_{e e}^{2}}{\mathrm{~m}_{\mathrm{e}}^{2} \mathrm{~m}_{X}^{2}} \simeq 2.5 \mathrm{~cm}\left(\frac{\Lambda_{e e}}{100 \mathrm{GeV}}\right)^{2}\left(\frac{10 \mathrm{MeV}}{\mathrm{~m}_{\times}}\right)^{2}
$$

Sub-GeV X with ee coupling allowed?

 \title{
$\mu \rightarrow e \mathrm{X}$ with $\mathrm{X} \rightarrow \overline{\mathrm{e}} \mathrm{e}$

}
 \title{

$\mu \rightarrow e \mathrm{X}$ with $\mathrm{X} \rightarrow \overline{\mathrm{e}} \mathrm{e}$

}
$\mu^{+} \rightarrow \boldsymbol{e}^{+} \mathbf{X}, \mathbf{X} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-}$

- Decay length typically below cm . => looks prompt.
- Below beam dump: $\wedge_{\mathrm{ee}}>30 \mathrm{TeV}$; mostly invisible, but some DV!

$\operatorname{BR}(\mu \rightarrow \mathrm{eX}) \operatorname{BR}(\mathrm{X} \rightarrow \mathrm{ee})\left(1-\mathrm{P}\left(\mathrm{I}_{\text {dec }}\right)\right)$

$$
\simeq \operatorname{BR}(\mu \rightarrow \mathrm{eX}) \frac{\mathrm{I}_{\mathrm{dec}}}{\gamma с \tau} .
$$

Possible in Mu3e!

$\mu \rightarrow \mathrm{e} X$ with $\mathrm{X} \rightarrow \mathrm{yy}$

$$
\mu^{+} \rightarrow \boldsymbol{e}^{+} \mathbf{X}, \mathbf{X} \rightarrow \gamma \gamma
$$

- Decay length always below cm . \Rightarrow looks prompt.
- Below beam dump: supernova constraints!
- Prompt channel

still interesting, maybe
$\log _{10}\left(m_{X} / \mathrm{GeV}\right)$ MEG(II) or Mu3e extension?

Muons difficult, taus easier.

$\tau \rightarrow \ell \mathrm{J}$ with $\mathrm{J} \rightarrow$ invisible

- ARGUS, ‘95; 5e5 taus.

- Belle, ‘16 prelim.; 1e9 taus.

- Also interesting for LFV Z'.
[Heeck, 1602.03810; Altmannshofer et al, 1607.06832]
- Improvement with Belle-II.

$$
\frac{\left|\left(m_{D} m_{D}^{\dagger}\right)_{\tau e}\right|}{v f} \lesssim 6 \times 10^{-3},
$$

$$
\frac{\left|\left(m_{D} m_{D}^{\dagger}\right)_{\tau \mu}\right|}{v f} \lesssim 10^{-3} .
$$

- Also interesting for LFV Z'.
[Heeck, 1602.03810; Altmannshofer et al, 1607.06832]
- Improvement with Belle-II.

$$
\frac{\left|\left(m_{D} m_{D}^{\dagger}\right)_{\tau e}\right|}{v f} \lesssim 6 \times 10^{-3},
$$

$$
\frac{\left|\left(m_{D} m_{D}^{\dagger}\right)_{\tau \mu}\right|}{v f} \lesssim 10^{-3} .
$$

$\tau \rightarrow e X$ with $X \rightarrow$ visible

- Tau at rest, higher X boost.
- Arbitrary decay lengths possible.
- Similar for $X \rightarrow$ ee, $\mu \mu, \mu \mathrm{e}$.
- Worthwhile in LHCb and Belle (II).

[Recent limits: Dolan et al, 1709.00009]

Muons difficult, taus easier...

Summary

- Charged LFV gives info complementary to v oscillations.
- Not simple yes/no question, need to find out if/how

$$
\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}-\mathrm{L}_{\tau}} \times \mathrm{U}(1)_{\mathrm{L}_{\mu}+\mathrm{L}_{\tau}-2 \mathrm{~L}_{\mathrm{e}}}
$$

is broken in ℓ sector.
\Rightarrow Need to search all possible channels!

- Non-trivial breaking: $\tau \rightarrow e e \bar{\mu}, \tau \rightarrow \mu \mu \bar{e}, p \rightarrow e \overline{\mu \mu}, p \rightarrow \mu \overline{e e}, \ldots$
- Keep light new physics in mind: $\ell \rightarrow \ell^{\prime} X, X \rightarrow$ inv, $\ell \ell, y y$.
- Hope for sign in Mu3e, MEG-II, Belle-II, Mu2e, LHC,...

Still some streetlights to search under!

