

Implications of lepton flavor non-universality in *B* decays for high-p_T searches at LHC

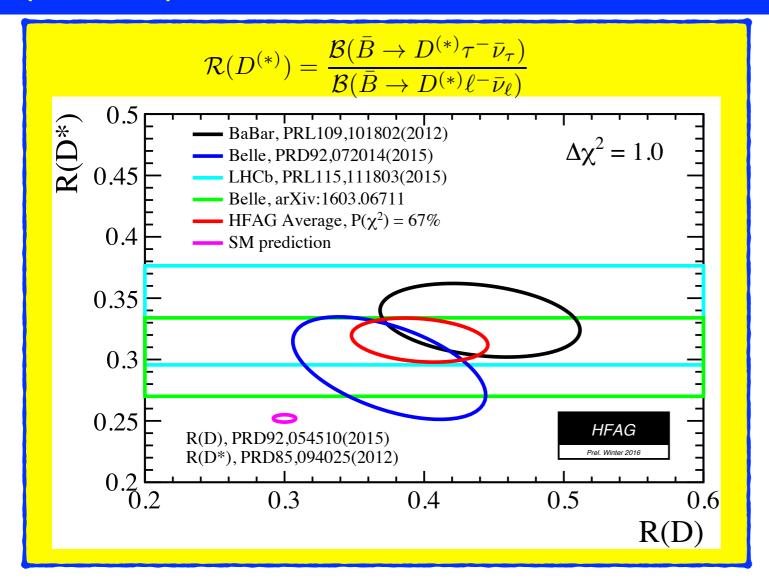
Admir Greljo

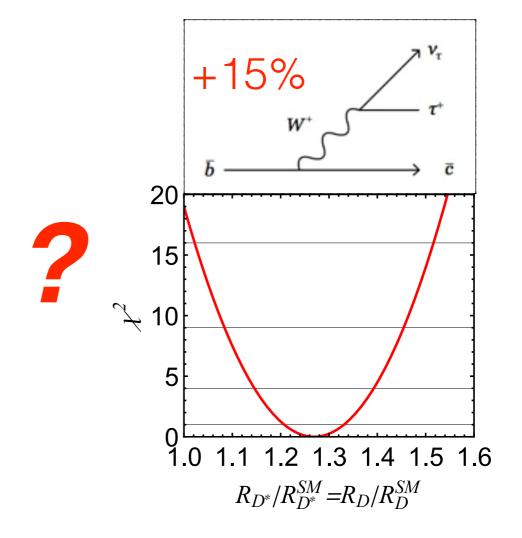
Based on

1609.07138 - Darius Faroughy, AG, Jernej F. Kamenik

and

JHEP 1507 (2015) 142 - AG, Gino Isidori, David Marzocca


JHEP 1608 (2016) 035 - Dario Buttazzo, AG, Gino Isidori, David Marzocca


14/11/2016, Seminar at PSI

Outline

- Motivation: Experimental hints on LFU violation in B decays
- LHC signatures:
 General discussion (focus on tau searches)
- Model examples:
 - Real vector triplet model
 - 2HDM
 - Vector & scalar leptoquark models
- Conclusions

(Main) Motivation: Test of LFU in charged currents

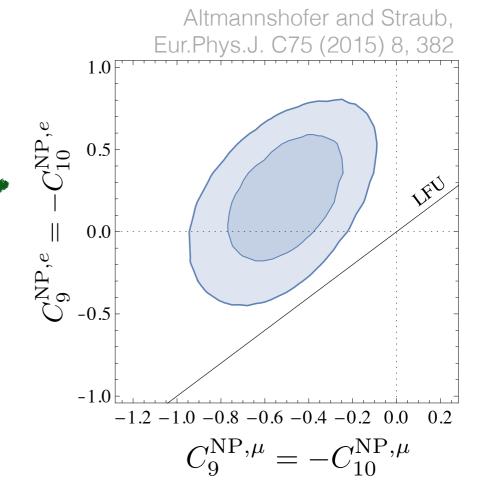
- ~ 4σ excess over the SM prediction
- Good agreement by three (very) different experiments
- Consistent with ~15% universal enhancement in tree level $b_L \rightarrow c_L \tau_L v_L$ amplitude (left-handed currents)
- Our estimate: $R_0 \equiv \frac{1}{2} \left(R_{D^*}^{\tau/\ell} 1 \right) = 0.13 \pm 0.03$

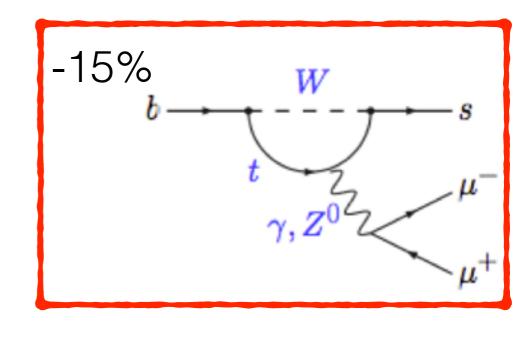
(Keep-in-mind) Motivation: Test of LFU in neutral currents

μ/e universality in b → s transitions

$$R_K^{\mu/e} = \frac{\mathcal{B}(B \to K\mu^+\mu^-)_{\text{exp}}}{\mathcal{B}(B \to Ke^+e^-)_{\text{exp}}} \Big|_{q^2 \in [1,6] \text{GeV}} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

Phys. Rev. Lett. 113 (2014) 151601



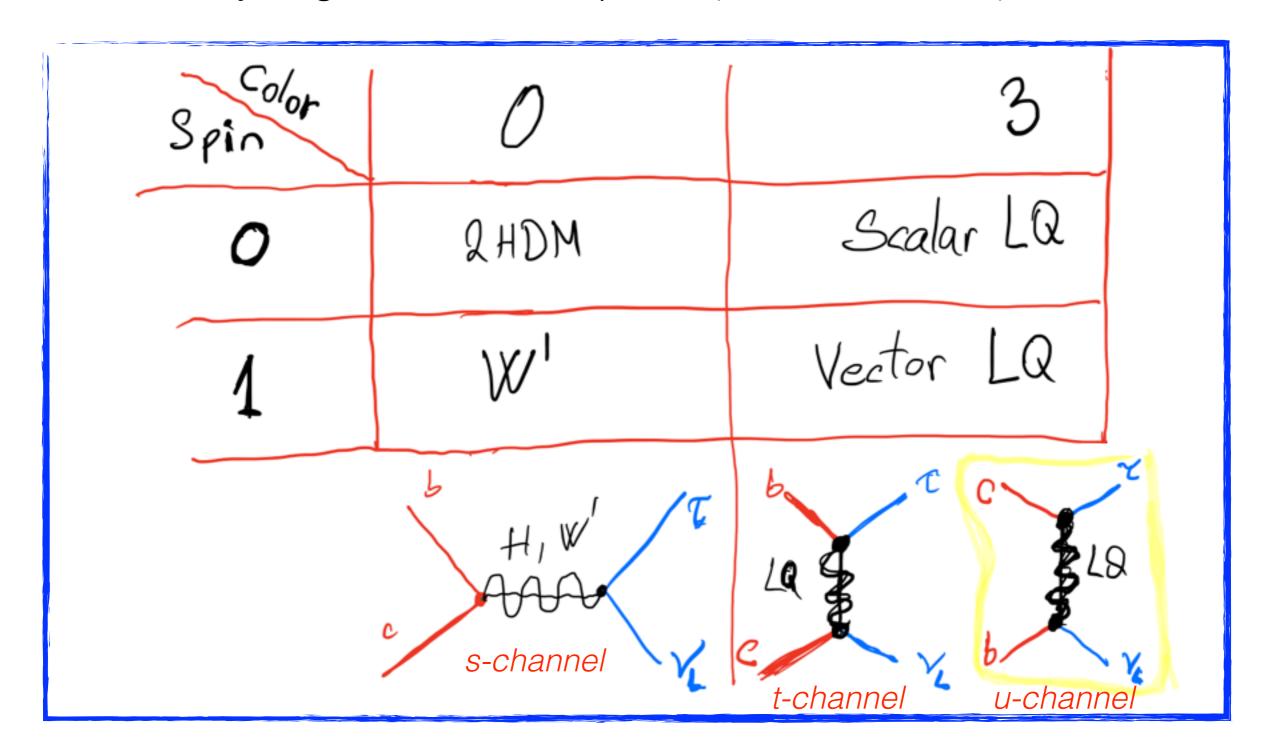

LHCb-PAPER-2015-051

 New physics contribution to muonic <u>left-left</u> operator (b_L γ_μ s_L)(μ_L γ^μ μ_L)

$$C_9^{\text{NP},e} = -C_{10}^{\text{NP},e} = 0$$

 $C_9^{\text{NP},\mu} = -C_{10}^{\text{NP},\mu} = (-0.14 \pm 0.04) C_9^{\text{SM},\mu}$

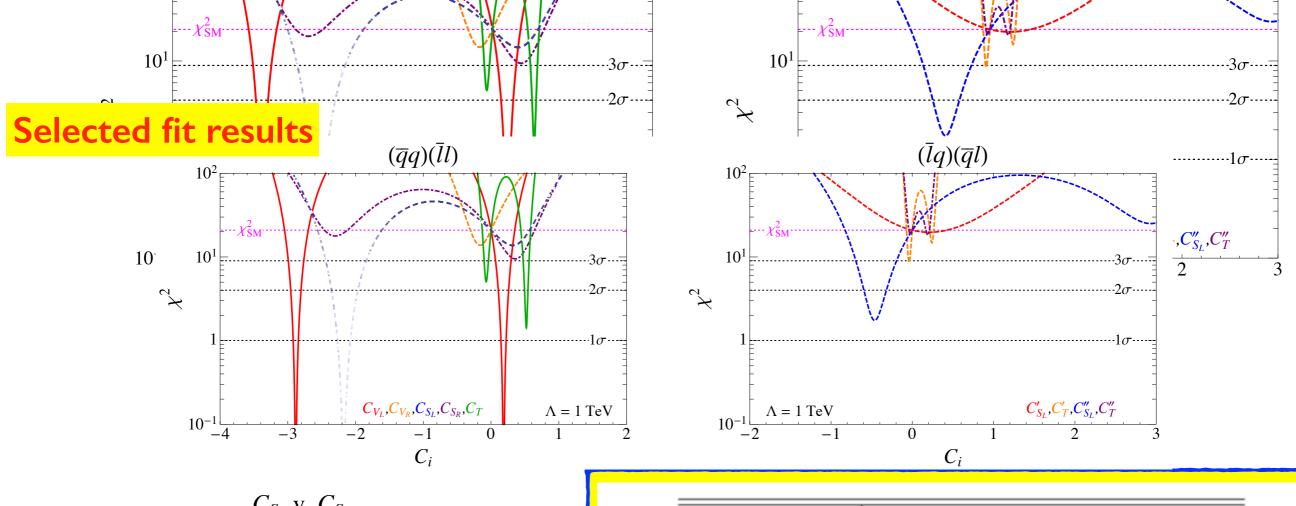
Nowadays, experimental anomalies tend to go away, more data is needed...

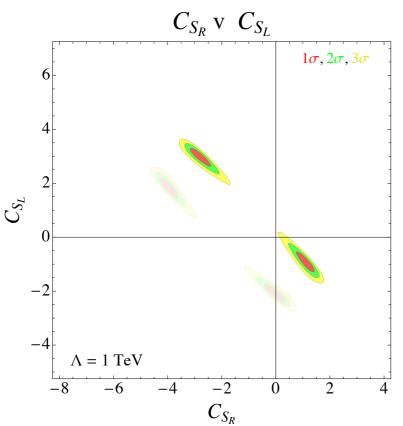

In meantime, what would:

- The nature of New Physics be giving such LFU violation?
- The "physics case" for high p_T LHC?

Prologue: Violation of LFU in B → D (*) T v decays

- Tree level charged current process in the SM
- Relatively large NP effect required (<u>tree level effect</u>)




EFT approach: Fitting the signal

Some operator bases

Simplified models

	Operator		Fierz identity	Allowed Current	$\delta \mathcal{L}_{\mathrm{int}}$
$\overline{\mathcal{O}_{V_L}}$	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			$({f 1},{f 3})_0$	$(g_q ar{q}_L oldsymbol{ au} \gamma^\mu q_L + g_\ell ar{\ell}_L oldsymbol{ au} \gamma^\mu \ell_L) W'_\mu$
\mathcal{O}_{V_R}					
\mathcal{O}_{S_R}				\(1.2\)	$(\lambda_d \bar{q}_L d_R \phi + \lambda_u \bar{q}_L u_R i \tau_2 \phi^\dagger + \lambda_\ell \bar{\ell}_L e_R \phi)$
\mathcal{O}_{S_L}				$\rangle (1,2)_{1/2}$	$(\lambda_d q_L u_R \phi + \lambda_u q_L u_R v_2 \phi^* + \lambda_\ell \epsilon_L e_R \phi)$
\mathcal{O}_T	$(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$				
\mathcal{O}'_{V_L}	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$\mathcal{O}_{V_L}\Big\langle$	$({f 3},{f 3})_{2/3}$	$\lambdaar{q}_Lm{ au}\gamma_\mu\ell_Lm{U}^\mu$
\mathcal{O}'_{V_R}	$(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$(3,1)_{2/3}$	$(\lambda \bar{q}_L \gamma_\mu \ell_L + \tilde{\lambda} \bar{d}_R \gamma_\mu e_R) U^\mu$
\mathcal{O}_{S_R}'	$(\bar{\tau}P_Rb)(\bar{c}P_L u)$		$-rac{1}{2}\mathcal{O}_{V_R}$,	~
\mathcal{O}_{S_L}'	$(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$		_	$({f 3},{f 2})_{7/6}$	$(\lambda \bar{u}_R \ell_L + \tilde{\lambda} \bar{q}_L i au_2 e_R) R$
\mathcal{O}_T'	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	$-6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$		
\mathcal{O}_{V_L}''	$(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-\mathcal{O}_{V_R}$		
$\mathcal{O}_{V_R}^{\prime\prime}$	$(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$(\bar{\bf 3},{f 2})_{5/3}$	$(\lambda \bar{d}_R^c \gamma_\mu \ell_L + \tilde{\lambda} \bar{q}_L^c \gamma_\mu e_R) V^\mu$
$\mathcal{O}_{S_R}^{\prime\prime}$	$(ar{ au}P_Rc^c)(ar{b}^cP_L u)$	\longleftrightarrow	$rac{1}{2}\mathcal{O}_{V_L}\Big\langle$	$(\bar{\bf 3},{\bf 3})_{1/3}$	$\lambdaar{q}_L^c i au_2oldsymbol{ au}\ell_Loldsymbol{S}$
$\mathcal{O}_{S_L}^{\prime\prime}$	$(\bar{\tau}P_Lc^c)(\bar{b}^cP_L u)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{8}\mathcal{O}_T$	$\rangle(ar{3},1)_{1/3}$	$(\lambda \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} \bar{u}_R^c e_R) S$
\mathcal{O}_T''	$\left (\bar{\tau} \sigma^{\mu\nu} P_L c^c) (\bar{b}^c \sigma_{\mu\nu} P_L \nu) \right $,	

Coefficient(s)	Best fit value(s) $(\Lambda = 1 \text{ TeV})$			
C_{V_L}	$0.18 \pm 0.04, -2.88 \pm 0.04$			
C_T	$0.52 \pm 0.02, -0.07 \pm 0.02$			
$C_{S_L}^{\prime\prime}$	-0.46 ± 0.09			
(C_R,C_L)	(1.25, -1.02), (-2.84, 3.08)			
$(C_{V_R}^\prime,C_{V_L}^\prime)$	(-0.01, 0.18), (0.01, -2.88)			
$(C_{S_R}^{\prime\prime},C_{S_L}^{\prime\prime})$	(0.35, -0.03), (0.96, 2.41),			
	(-5.74, 0.03), (-6.34, -2.39)			

TABLE III. Best-fit operator coefficients with acceptable q^2 spectra and $\chi^2_{\min} < 5$. For the 1D fits in Fig. 1 we include the $\Delta \chi^2 < 1$ ranges (upper part), and show the central values of the 2D fits in Fig. 2 (lower part).

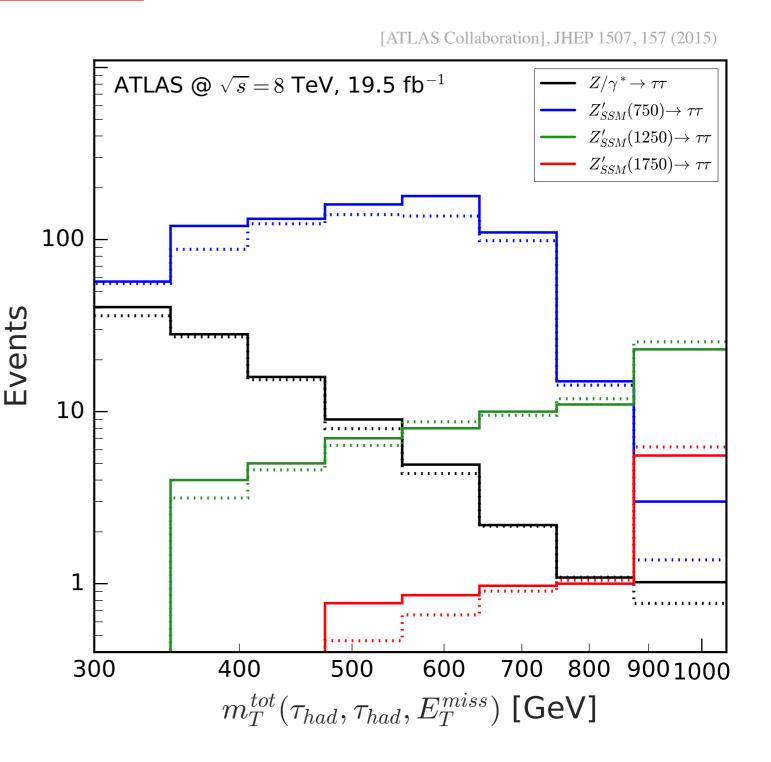
SMEFT & Implications for high-p_T LHC

• Leading effects expected at **dim-6**: $\mathcal{L}_{eff.}(x) = \mathcal{L}_{SM}(x) + \frac{1}{\Lambda^2}\mathcal{L}_6(x) + \dots$

					Warsaw basis, 1008.4884	
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\overline{l}_p\gamma_\mu l_r)(\overline{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
**************************************		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $	
		$Q_{ud}^{(8)}$	$\left (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$			B-viol	B-violating		
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(u_s^{\gamma})^TCe_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$				
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) arepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$			

SMEFT & Implications for high-p_T LHC

• Leading effects expected at **dim-6**: $\mathcal{L}_{eff.}(x) = \mathcal{L}_{SM}(x) + \frac{1}{\Lambda^2}\mathcal{L}_6(x) + \dots$


Warsaw basis, 1008.4884 $(\bar{R}R)(\bar{R}R)$ $(\bar{L}L)(\bar{R}R)$ $(\bar{L}L)(\bar{L}L)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$ $(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ Q_{ll} Q_{le} Q_{ee} $Q_{qq}^{(1)}$ $(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$ $Q_{qq}^{(3)}$ $(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$ $Q_{lq}^{(1)}$ $(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$ $Q_{lq}^{(3)}$ $(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ $(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$ $(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$ Q_{ledq} $Q_{quqd}^{(1)}$ $(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$ $Q_{quqd}^{(8)}$ $(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$ $Q_{lequ}^{(1)}$ Qqq SU(2) prediction: Neutral currents $(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$ $(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$ $\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$ Q_{duu}

Tau searches at high-p_T

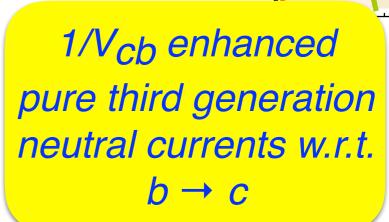
Recast of T+T- searches at LHC

- Simulation pipeline: Feynrules>MadGraph>Pythia> Delphes
- Hadronic τ candidates
- Validated against SM bkg, and SSM Z'.
- Fit to the total transverse mass variable m_T^{tot}

$$m_T^{\text{tot}} \equiv \sqrt{m_T^2(\tau_1, \tau_2) + m_T^2(E_T, \tau_1) + m_T^2(E_T, \tau_2)}.$$

SMEFT: Warm up exercise \(\frac{5}{2} \) 300 \(\frac{5}{2} \) 30

AG, Isidori, Marzocca, JHEP 1507 (2015) 142


$$\mathcal{L}^{\text{eff}} \supset c_{QQLL}^{ijkl}(\bar{Q}_i\gamma_\mu\sigma^aQ_j)(\bar{L}_k\gamma^\mu\sigma_aL_l)$$

 Flavor alignment with down quarks and charged leptons (to avoid FCNC in the down sector)

$$Q_i = (V_{ji}^* u_L^j, d_L^i)^T$$
 and $L_i = (U_{ji}^* \nu^j, \ell_L^i)^T$

Dominant couplings with the third generation

$$c_{QQLL}^{ijkl} \simeq c_{QQLL} \delta_{i3} \delta_{j3} \delta_{k3} \delta_{l3}$$

100

200

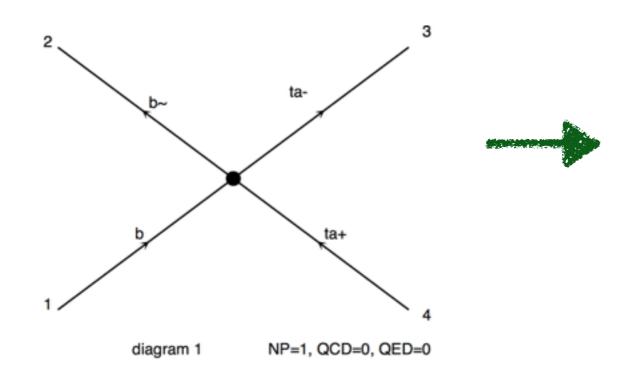
 m_A

SMEFT: Warm up exercise \(\frac{1}{2} \) 300 AG, Isidori, Marzocca, JHEP 1507 (2015) 142

AG, Isidori, Marzocca, JHEP 1507 (2015) 142

$$\mathcal{L}^{\text{eff}} \supset c_{QQLL}^{ijkl}(\bar{Q}_i\gamma_\mu\sigma^aQ_j)(\bar{L}_k\gamma^\mu\sigma_aL_l)$$

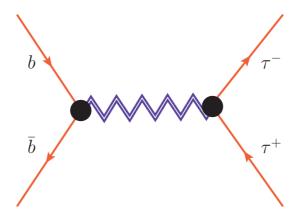
 Flavor alignment with down quarks and charged leptons (to avoid FCNC in the down sector)


$$Q_i = (V_{ji}^* u_L^j, d_L^i)^T$$
 and $L_i = (U_{ji}^* \nu^j, \ell_L^i)^T$

 Dominant couplings with the third generation $c_{OOLL}^{ijkl} \simeq c_{QQLL}\delta_{i3}\delta_{j3}\delta_{k3}\delta_{l3}$

1/V_{cb} enhanced pure third generation neutral currents w.r.t. $b \rightarrow c$

100

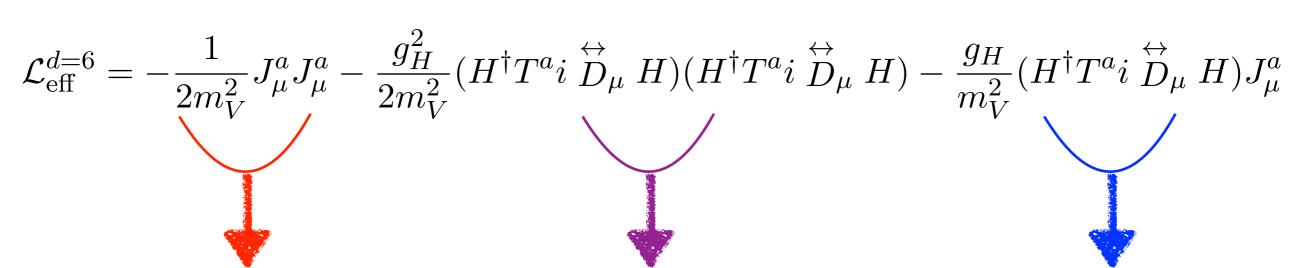

Recast of 8 TeV τ+τ-ATLAS search:

 $|c_{W'}| < 2.8 \text{ TeV}^{-2} \text{ at } 95\% \text{ CL}$

Fit to R(D*) anomaly:

 $c_{W'} \simeq (2.1 \pm 0.5) \,\mathrm{TeV}^{-2}$

Real vector triplet model



Vector triplet model (VTM)

Introduce heavy spin-1 triplet

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu]a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} + g_{H} V_{\mu}^{a} (H^{\dagger} T^{a} i \stackrel{\leftrightarrow}{D}_{\mu} H) + V_{\mu}^{a} J_{\mu}^{a}$$

integrate out heavy vector and match to the SMEFT

 Low-energy flavour physics Tiny shift in the Higgs couplings

 Non-universal contribution to *Z* and *W* pole obs.

VTM: Low-energy flavor physics

SU(2) triplet current:

$$J_{\mu}^{a} = g_{q} \lambda_{ij}^{q} \left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{a} q_{L}^{j} \right) + g_{\ell} \lambda_{ij}^{\ell} \left(\bar{\ell}_{L}^{i} \gamma_{\mu} \tau^{a} \ell_{L}^{j} \right)$$

$$\tau^{a} = \sigma^{a}/2$$

$$\Delta \mathcal{L}_{4f}^{(T)} = -\frac{1}{2m_V^2} J_\mu^a J_\mu^a \qquad {}^* \text{integrate out } \mathcal{L} \supset \rho_\mu^a J_\mu^a$$

VTM: Low-energy flavor physics

SU(2), triplet current:

$$J_{\mu}^{a} = g_{q} \lambda_{ij}^{q} \left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{a} q_{L}^{j} \right) + g_{\ell} \lambda_{ij}^{\ell} \left(\bar{\ell}_{L}^{i} \gamma_{\mu} \tau^{a} \ell_{L}^{j} \right)$$
$$\tau^{a} = \sigma^{a}/2$$

$$\Delta \mathcal{L}_{4f}^{(T)} = -\frac{1}{2m_V^2} J_\mu^a J_\mu^a \qquad {}^* \text{integrate out } \mathcal{L} \supset \rho_\mu^a J_\mu^a$$

$$\begin{array}{ll} \textbf{quark x lepton} & \Delta \mathcal{L}_{\mathrm{c.c.}}^{(T)} &=& -\frac{g_q g_\ell}{2 m_V^2} \left[(V \lambda^q)_{ij} \lambda_{ab}^\ell \left(\bar{u}_L^i \gamma_\mu d_L^j \right) \left(\bar{\ell}_L^a \gamma_\mu \nu_L^b \right) + \mathrm{h.c.} \right] \;, \\ & \Delta \mathcal{L}_{\mathrm{FCNC}}^{(T)} &=& -\frac{g_q g_\ell}{4 m_V^2} \lambda_{ab}^\ell \left[\lambda_{ij}^q \left(\bar{d}_L^i \gamma_\mu d_L^j \right) - (V \lambda^q V^\dagger)_{ij} \left(\bar{u}_L^i \gamma_\mu u_L^j \right) \right] \left(\bar{\ell}_L^a \gamma_\mu \ell_L^b - \bar{\nu}_L^a \gamma_\mu \nu_L^b \right) \\ & \mathrm{quark} \; \times \; \mathrm{quark} \; \Delta \mathcal{L}_{\Delta F=2}^{(T)} &=& -\frac{g_q^2}{8 m_V^2} \left[(\lambda_{ij}^q)^2 \left(\bar{d}_L^i \gamma_\mu d_L^j \right)^2 + (V \lambda^q V^\dagger)_{ij}^2 \left(\bar{u}_L^i \gamma_\mu u_L^j \right)^2 \right] \;, \end{array}$$

$$\Delta \mathcal{L}_{\mathrm{LFV}}^{(T)} = -\frac{g_{\ell}^2}{8m_{\mathrm{L}}^2} \lambda_{ab}^{\ell} \lambda_{cd}^{\ell} (\bar{\ell}_L^a \gamma_{\mu} \ell_L^b) (\bar{\ell}_L^c \gamma_{\mu} \ell_L^d) ,$$

$$\Delta \mathcal{L}_{\mathrm{LFU}}^{(T)} = -\frac{g_{\ell}^2}{8m_V^2} (-2\lambda_{ab}^{\ell}\lambda_{cd}^{\ell} + 4\lambda_{ad}^{\ell}\lambda_{cb}^{\ell}) (\bar{\ell}_L^a \gamma_{\mu} \ell_L^b) (\bar{\nu}_L^c \gamma_{\mu} \nu_L^d) .$$

VTM: Low-energy flavor physics

SU(2), triplet current:

$$J_{\mu}^{a} = g_{q} \lambda_{ij}^{q} \left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{a} q_{L}^{j} \right) + g_{\ell} \lambda_{ij}^{\ell} \left(\bar{\ell}_{L}^{i} \gamma_{\mu} \tau^{a} \ell_{L}^{j} \right)$$

$$\tau^{a} = \sigma^{a}/2$$

$$\Delta \mathcal{L}_{4f}^{(T)} = -\frac{1}{2m_V^2} J_\mu^a J_\mu^a \qquad {}^* \text{integrate out } \mathcal{L} \supset \rho_\mu^a J_\mu^a$$

quark x le U(2)q flavor symmetry

Barbieri, Isidori, Jones-Perez, Lodone, Straub, Eur. Phys. J. C 71 (2011) 1725

$$\begin{array}{lll} \text{quark} \times \text{qt} \\ \text{lepton} \times \text{le} \end{array} \quad \lambda^q \cong \left(\begin{array}{ccc} \epsilon_2 |V_{td}|^2 & \epsilon_2 V_{td}^* V_{ts} & \epsilon_1^* V_{td}^* \\ \epsilon_2 V_{td} V_{ts}^* & \epsilon_2 |V_{ts}|^2 & \epsilon_1^* V_{ts}^* \\ \epsilon_1 V_{td} & \epsilon_1 V_{ts} & 1 \end{array} \right) \text{ in the basis of charged-leptons and down-type quarks}$$

$$\begin{array}{ccc}
\epsilon_2 V_{td}^* V_{ts} & \epsilon_1^* V_{td}^* \\
\epsilon_2 |V_{ts}|^2 & \epsilon_1^* V_{ts}^* \\
\epsilon_1 V_{ts} & 1
\end{array}$$

 $-~ar
u_L^a\gamma_\mu
u_L^b\left)$

 $8m_V^2$

VTM: Combined fit to low-energy data

• Fit parameters:
$$\epsilon_{\ell,q} \equiv \frac{g_{\ell,q} \, m_W}{g \, m_V} \approx g_{\ell,q} \frac{122 \, {\rm GeV}}{m_V}$$
 $\lambda_{bs}^{\bar{q}}, \lambda_{\mu\mu}^{\bar{\ell}}, \lambda_{\tau\mu}^{\bar{\ell}}$

• 2 flavour universal

$$[\lambda_{bs}^q, \lambda_{\mu\mu}^\ell, \lambda_{ au\mu}^\ell]$$

• 3 flavour dependent

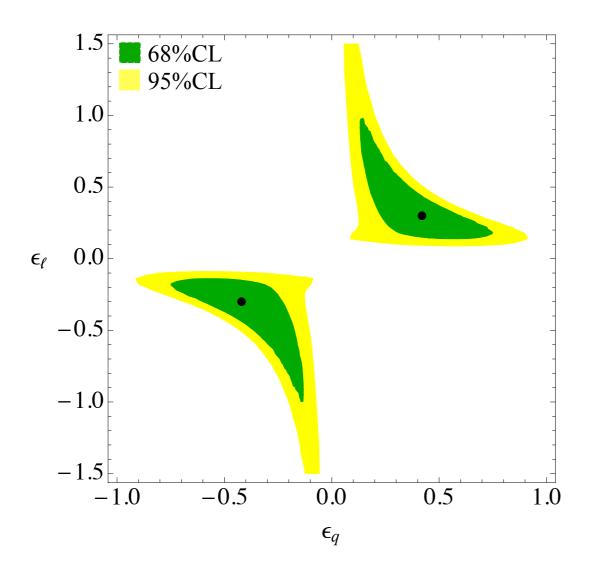
Data:

	Obs. \mathcal{O}_i	Exp. bound $(\mu_i \pm \sigma_i)$	Def. $\mathcal{O}_i(x_\alpha)$
1) b > 0 = 1/	$R_0(D^*)$	0.14 ± 0.04	$\epsilon_\ell\epsilon_q$
1) b→c τ v	$R_0(D)$	0.19 ± 0.09	$\epsilon_\ell \epsilon_q$
2) b \rightarrow cv $\mu(e)$	$\Delta R_{b \to c}^{\mu e}$	0.00 ± 0.01	$2\epsilon_{\ell}\epsilon_{q}\lambda_{\mu\mu}^{\ell}$
3) B_s mix	$\Delta R_{B_s}^{\Delta F=2}$	0.0 ± 0.1	$\epsilon_q^2 \lambda_{bs}^q ^2 (V_{tb}^* V_{ts} ^2 R_{SM}^{loop})^{-1}$
4) b→s µ µ	ΔC_9^μ	-0.53 ± 0.18	$-(\pi/\alpha_{\rm em})\lambda_{\mu\mu}^{\ell}\epsilon_{\ell}\epsilon_{q}\lambda_{bs}^{q}/ V_{tb}^{*}V_{ts} $
5) $\tau \rightarrow vv\mu(e)$	$\Delta R_{ au o \mu/e}$	0.0040 ± 0.0032	$2\epsilon_\ell^2 \left(\lambda_{\mu\mu}^\ell - \frac{1}{2} \lambda_{\tau\mu}^\ell ^2\right)$
6) $\tau \rightarrow 3\mu$	$\Lambda_{ au\mu}^{-2}$	$0.0 \pm 4.1 \times 10^{-9} [\text{GeV}^{-2}]$	$(G_F/\sqrt{2})\epsilon_\ell^2\lambda_{\mu\mu}^\ell\lambda_{ au\mu}^\ell$
7) <i>D</i> mix	Λ_{uc}^{-2}	$(0.0 \pm 5.6) \times 10^{-14} [\text{GeV}^{-2}]$	$(G_F/\sqrt{2})\epsilon_q^2 V_{ub}V_{cb}^* ^2$

$$\chi^{2}(x_{\alpha}) = \sum_{i} \frac{(\mathcal{O}_{i}(x_{\alpha}) - \mu_{i})^{2}}{\sigma_{i}^{2}}$$
 $\chi^{2}(x_{\text{SM}}) - \chi^{2}(x_{\text{BF}}) = 18.6$

$$\chi^2(x_{\rm SM}) - \chi^2(x_{\rm BF}) = 18.6$$

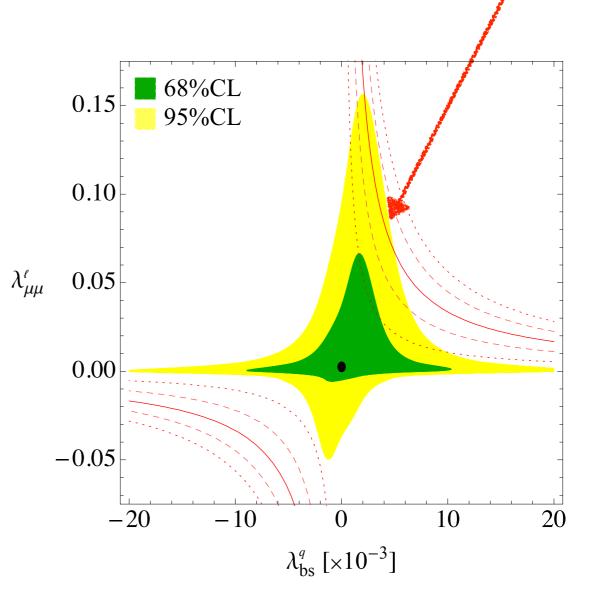
VTM: Combined fit to low-energy data


20

0.30

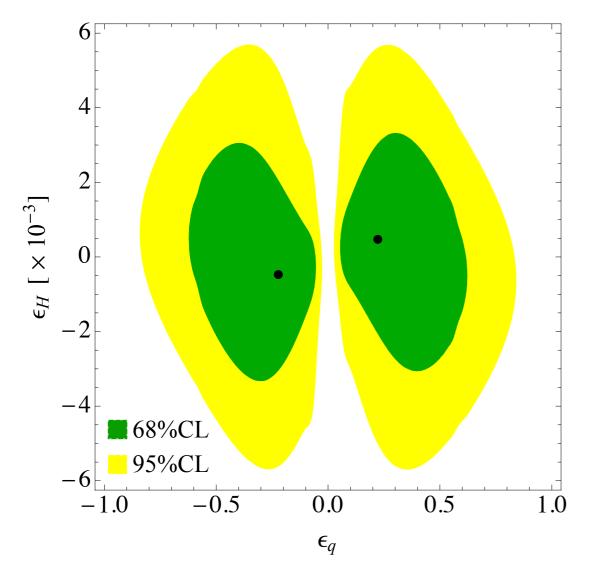
68%CL 95%CL

The fit is driven by


$$R_0(D^*) = \epsilon_\ell \epsilon_q$$

68%CL

95%CI


• Some tension with $\Delta C_9^\mu = -\Delta C_{10}^\mu = -0.53 \pm 0.18$

VTM: Bounds from LEP-I

Non-universal contribution to Z
and W pole obs.

$$\epsilon_X \equiv g_X m_W / g m_V$$

Using the fit results from:

A. Efrati, A. Falkowski and Y. Soreq, arXiv:1503.07872

<u>EWPO</u>:

- (I) Small mass splitting
- (2) Stringent limits on g_H

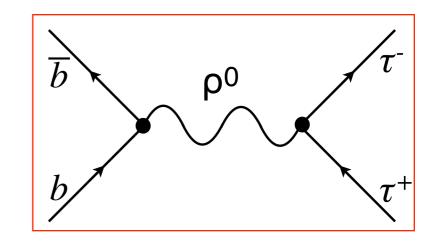
Vector triplet dominantly decays to third generation SM fermions

 Low-energy flavor physics

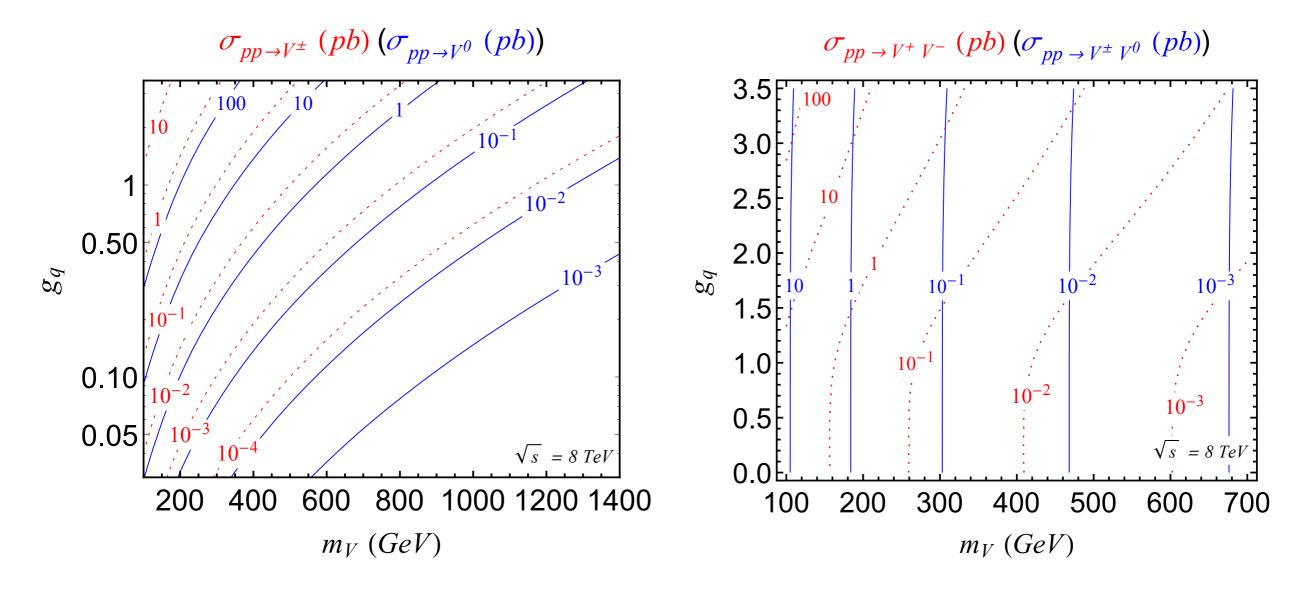
> [AG, Isidori, Marzocca] JHEP 1507 (2015) 142

• Determined by: $\Delta \mathcal{L}_{VJ} = V_\mu^a J_\mu^a = c_{ij}^V \ \bar{f}_L^i \gamma^\mu f_L^j V_\mu$

Decay modes:


- Neutral vector:
 - · TT
 - · V V
 - · bb
 - · tt

- Charged vector:
 - · T V
 - · tb


$$\frac{\Gamma_{V^{\pm}}}{m_{V^{\pm}}} \approx \frac{\Gamma_{V^0}}{m_{V^0}} \approx \frac{1}{48\pi} (g_{\ell}^2 + 3g_q^2)$$

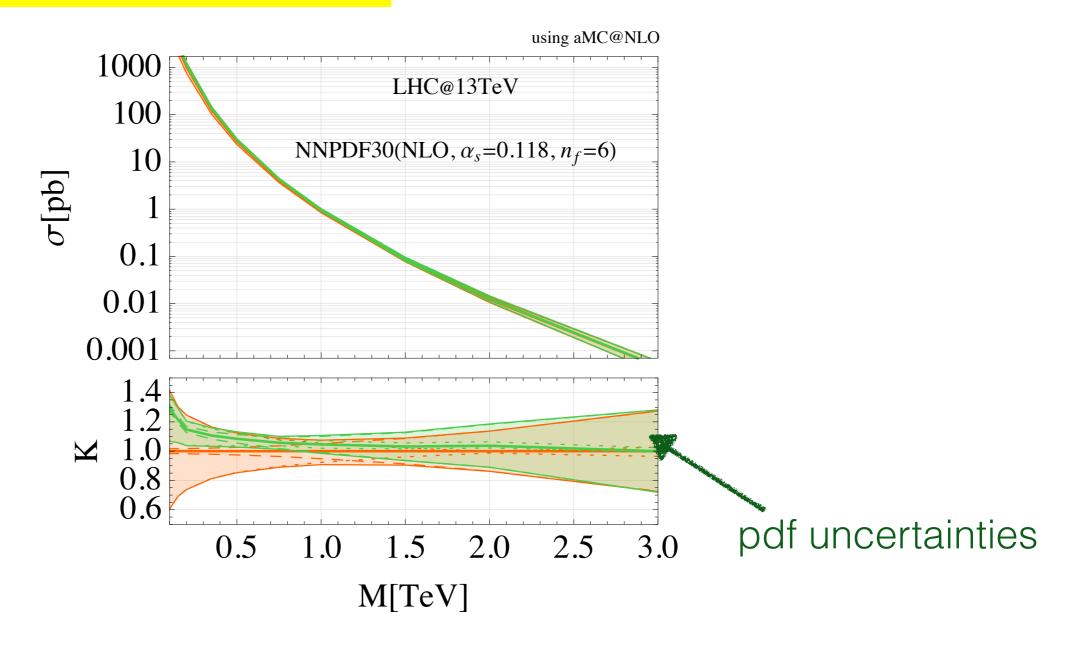
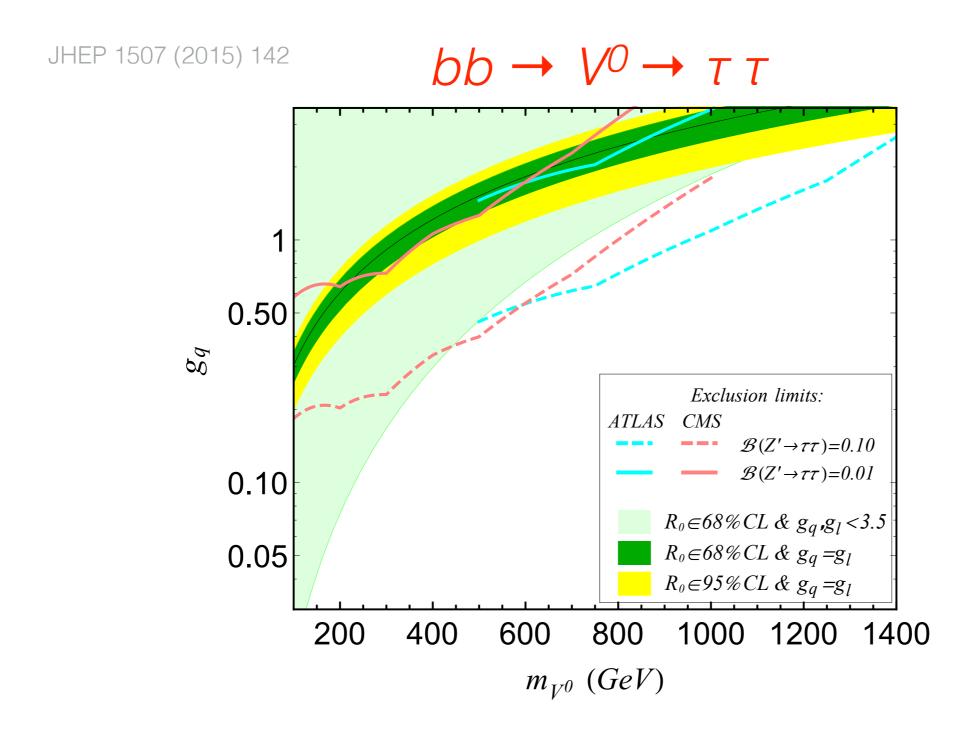
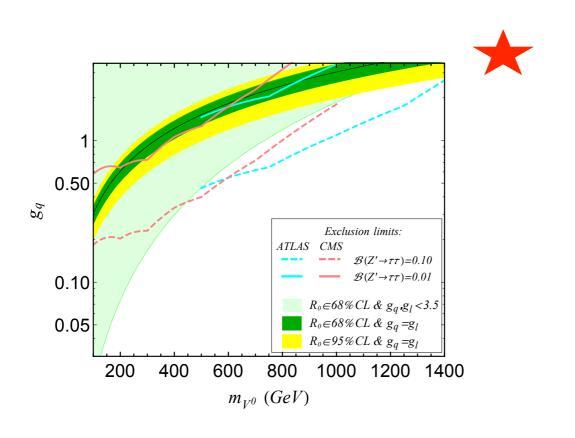
Production modes:

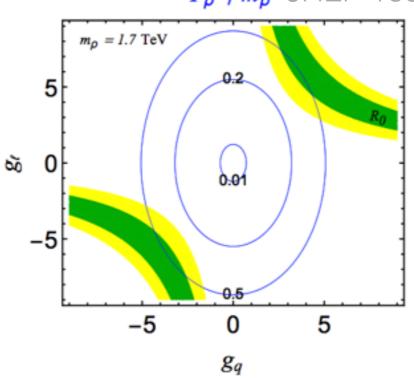
- 1) Single production ($b b \rightarrow V^0$, $b c \rightarrow V^{\pm}$)
- 2) Pair production

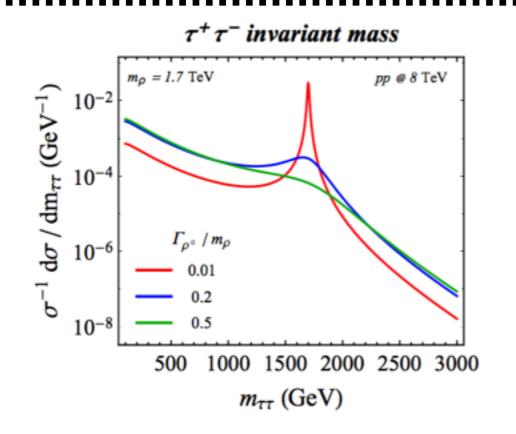
Production modes:

- Left: single V production $(bb \rightarrow V^0, b c \rightarrow V^+)$
- Right: pair production

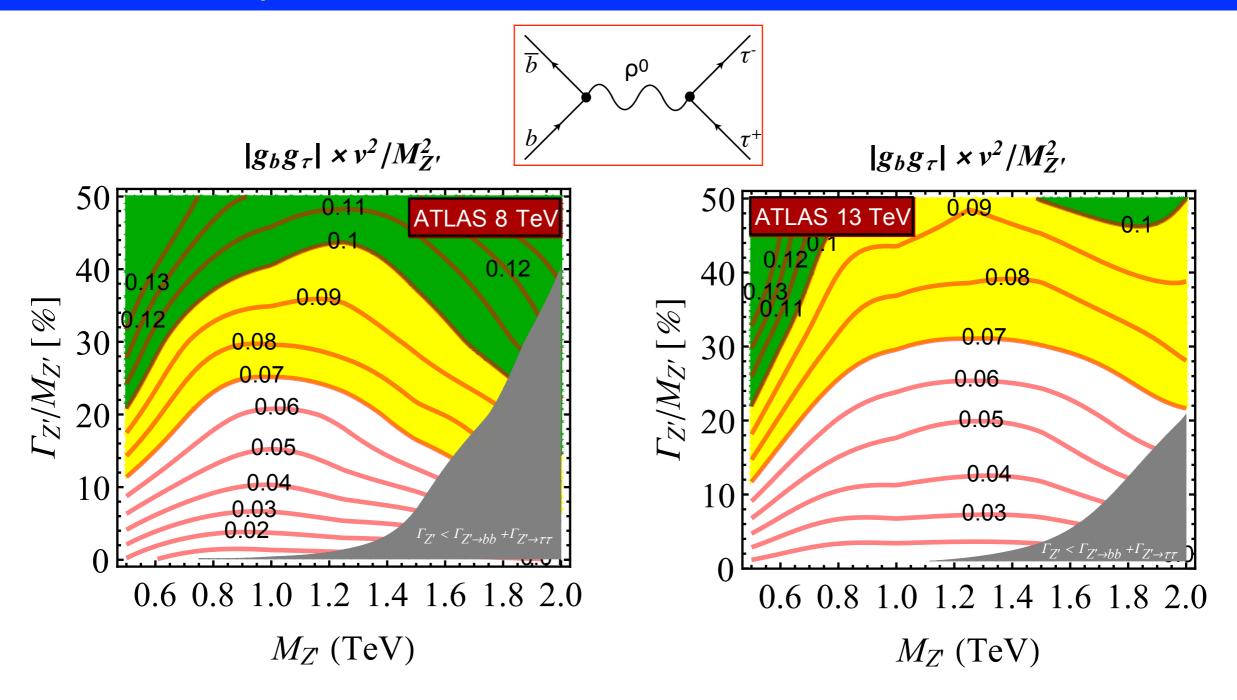
Z' production @ NLO QCD

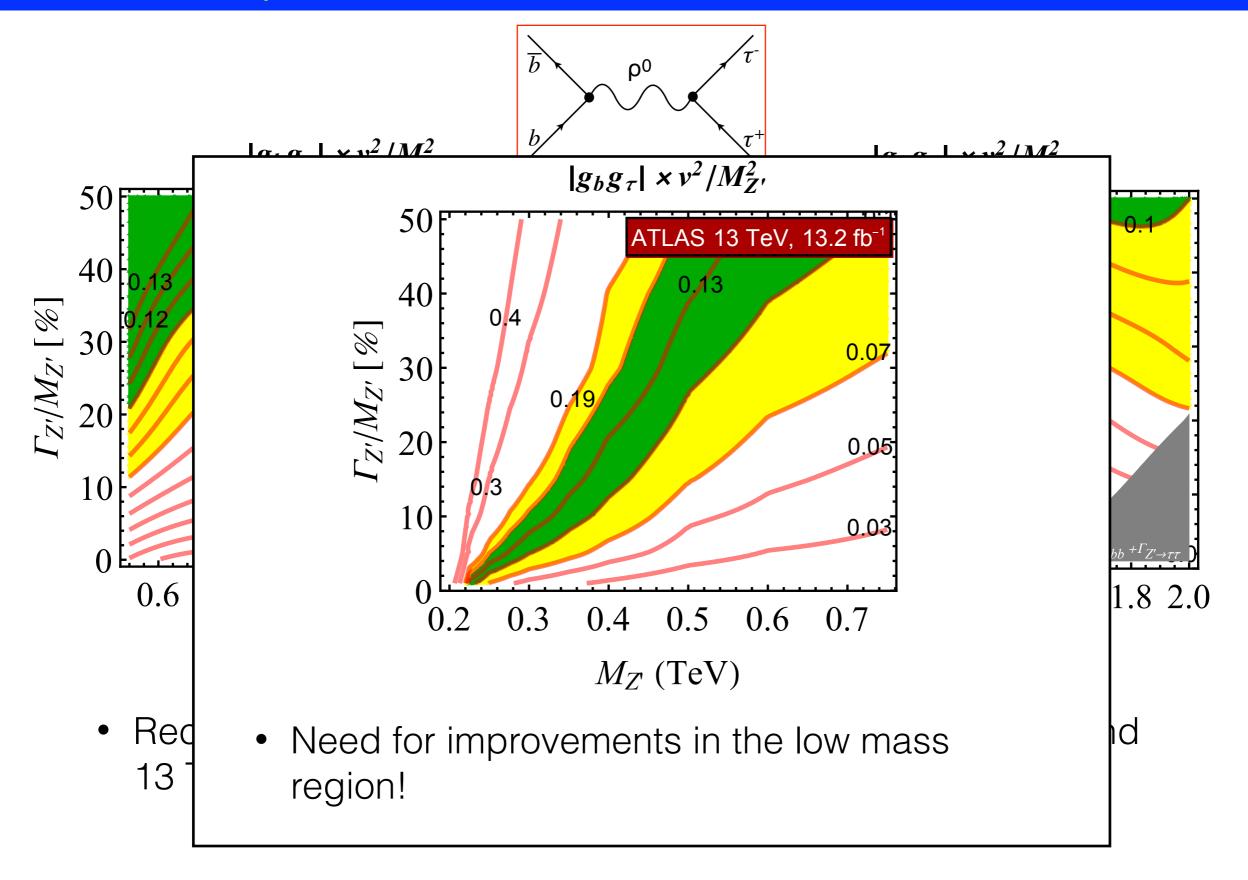





Figure 3: Next-to-leading order QCD corrections for a narrow Z' production via bottom-bottom fusion.

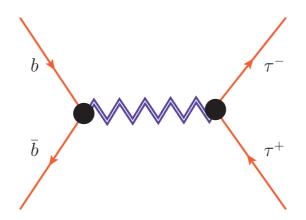


 T T resonance searches can be reconciled by having a broad resonance (either V⁰ mass is ~ few TeV or new BSM decay channels)




- Important to optimize searches for broad resonances
- Careful extraction of the present bounds is in order (recast)

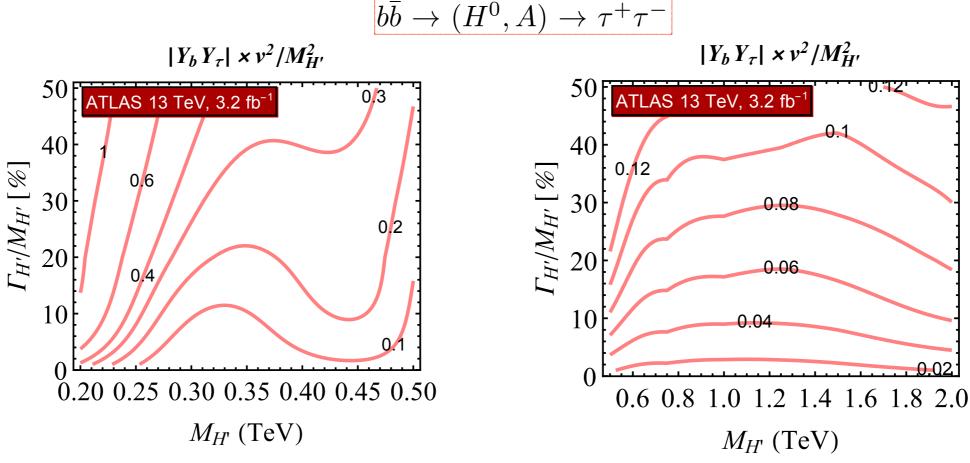
Vector triplet model: 8 & 13 TeV recast bounds



 Recast of the ATLAS TT searches at 8 TeV, 19.5 fb⁻¹ (left) and 13 TeV, 3.2 fb⁻¹ (right)

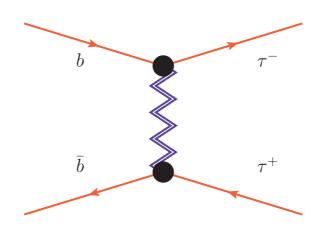
Vector triplet model: 8 & 13 TeV recast bounds

Two Higgs doublet model (2HDM)


Two Higgs doublet model

$$H' \sim (H^+, (H^0 + iA^0)/\sqrt{2})$$

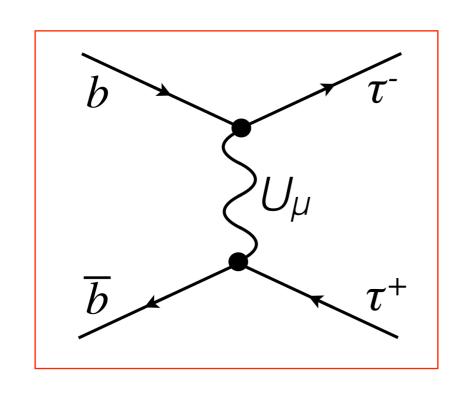
$$\mathcal{L}_{H'} = |D^{\mu}H'|^2 - M_{H'}^2 |H'|^2 - \lambda_{H'}|H'|^4 - \delta V(H', H)$$
$$- Y_b \bar{Q}_3 H' b_R - Y_c \bar{Q}_3 \tilde{H}' c_R - Y_\tau \bar{L}_3 H' \tau_R + \text{h.c.},$$


Fit to R(D*) anomaly

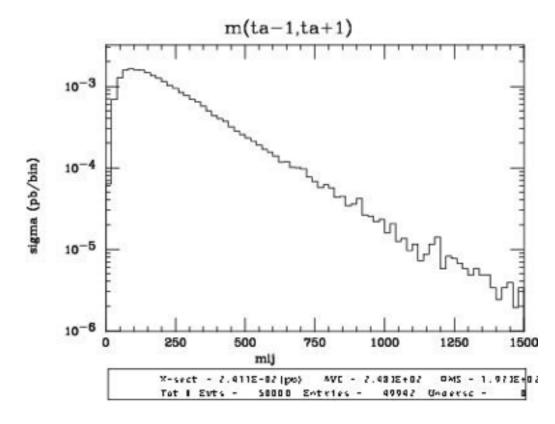
$$Y_b Y_\tau^* \times v^2 / M_{H^+}^2 = (2.9 \pm 0.8)$$

[Faroughy, AG, F. Kamenik] 1609.07138

Leptoquark models


Vector Leptoquark: (3,1,2/3)

$$\mathcal{L}_{U} \supset -\frac{1}{2} U_{\mu\nu}^{\dagger} U^{\mu\nu} + m_{U}^{2} U_{\mu}^{\dagger} U^{\mu} + (J_{U}^{\mu} U_{\mu} + \text{h.c.}),$$


$$J_{U}^{\mu} \equiv g_{U} \beta_{ij} \bar{Q}_{i} \gamma^{\mu} L_{j}.$$

where $\beta_{33} = 1$. Integrating out (U_{μ}) at tree level,

$$\mathcal{L}_U^{ ext{eff}} \supset -\frac{1}{m_U^2} J_U^{\mu\dagger} J_U^{\mu} + \text{h.c.} .$$

[Faroughy, AG, F. Kamenik] 1609.07138

Vector Leptoquark Model: bb → TT recast at 8 & 13 TeV

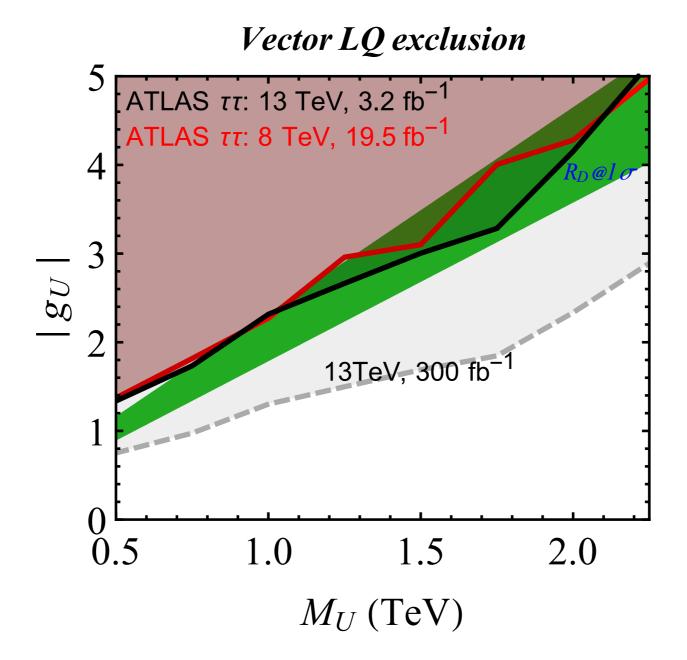
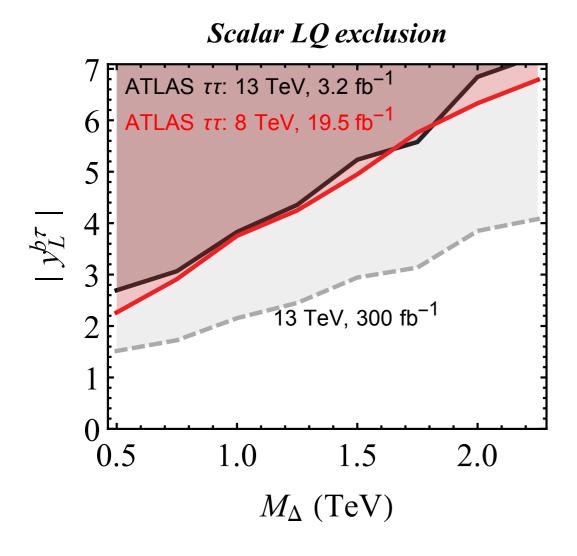



Figure 4: 8 TeV (13 TeV) ATLAS $\tau\tau$ search exclusion limits are shown in red (black) and $R(D^{(*)})$ preferred region in green for the vector LQ model. Projected 13 TeV limits for 300 fb⁻¹ are shown in grey.

Scalar Leptoquark: (3,2,1/6)

$$\mathcal{L}_{\Delta} \supset Y_L^{ij} \bar{d}_i (i\sigma_2 \Delta^*)^{\dagger} L_j + Y_R^{i\nu} \bar{Q}_i \Delta \nu_R + \text{h.c.} .$$

Fit to R(D*) anomaly

$$\left(\frac{Y_R^{b\nu} Y_L^{b\tau*}}{g_w^2}\right) \left(\frac{M_W}{M_\Delta}\right)^2 = 1.2 \pm 0.3$$

 $Y_R^{b au}$ is pushed to non-perturbative values

- QCD LQ pair production limits are getting stronger (~1 TeV)
- Third generation LQ searches very important

Conclusions

- **LFU** is not a fundamental symmetry. Important to test it.
- Anomaly in $B \to D^{(*)} \tau v$ decays interplays with high-p_T LHC physics
- <u>Tau-tau searches</u> provide stringent limits
- Other signatures involving third generation fermions important
- Do not miss wide or light resonances, nor tails

